[发明专利]一种基于SC-GAN的膝部MRI重建技术在审

专利信息
申请号: 202111006977.0 申请日: 2021-08-30
公开(公告)号: CN113744235A 公开(公告)日: 2021-12-03
发明(设计)人: 赵祥;张鑫;杨铁军;李冰洁 申请(专利权)人: 河南工业大学
主分类号: G06T7/00 分类号: G06T7/00;G06T7/10;G06N3/04;G06N3/08
代理公司: 暂无信息 代理人: 暂无信息
地址: 450001 河南省郑州市高新技*** 国省代码: 河南;41
权利要求书: 查看更多 说明书: 查看更多
摘要: 现有的方法重建高倍欠采图像时纹理细节丢失严重。针对这一问题,借鉴生成对抗网络的对抗学习思想,文中提出一种基于语义对比生成对抗网络的高倍欠采MRI重建方法(Semantic‑Contrast Generative Adversarial Network,SC‑GAN)。该方法由连续的两部分组成。第一部分,将笛卡尔高倍随机欠采样MRI图像输入基于U‑NET的生成器,与鉴别器不断博弈对抗生成初步重建图像,以此构建重建子网;另一部分是语义对比子网,通过VGG‑16比较初步重建图像与全采样图像的语义信息,比较结果反馈给第一部分进行参数调优,直到生成最佳的重建图像。实验结果表明,在加速因子高达7(14%)时,获得了主客观评价结果均较好的重建图像。与先进的重建方法相比,该方法的内存损耗更低、收敛速度更快且纹理细节更丰富,可为下一代MRI机器的研发提供算法支持。
搜索关键词: 一种 基于 sc gan 膝部 mri 重建 技术
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于河南工业大学,未经河南工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202111006977.0/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top