[发明专利]基于ALMBO优化算法的质子交换膜燃料电池子空间辨识方法有效
申请号: | 202111143223.X | 申请日: | 2021-09-28 |
公开(公告)号: | CN114137829B | 公开(公告)日: | 2022-12-27 |
发明(设计)人: | 孙成硕;金饶;戚志东;徐胜元;单梁;周礼锋;张扬;沈致远 | 申请(专利权)人: | 南京理工大学 |
主分类号: | G05B13/04 | 分类号: | G05B13/04 |
代理公司: | 南京理工大学专利中心 32203 | 代理人: | 岑丹 |
地址: | 210094 江*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于ALMBO优化算法的质子交换膜燃料电池子空间辨识方法,首先,选取模型辨识的输入输出变量,并在PEMFC测控平台采集数据。然后,构建输入输出数据的Hankel矩阵,并通过SVD分解求取系统的阶次。本发明发明引入改进的优化算法—变异反向学习的自适应帝王蝶优化算法(ALMB O),在迁移算子中,引入变异反向学习策略,对蝴蝶的位置进行变异更新,增加种群的多样性。在调整算子中,融入自适应的思想,使得调整算子随着迭代次数的变化进行线性调整,提高了算法适应度,增强算法的寻优能力。并对适应度最差的5个粒子采用柯西变异,提高其寻优能力。本发明无需复杂的电堆特性分析,且引入改进的优化算法,寻优精度高,模型输出更加贴切真实工作特性。 | ||
搜索关键词: | 基于 almbo 优化 算法 质子 交换 燃料电池 空间 辨识 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京理工大学,未经南京理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202111143223.X/,转载请声明来源钻瓜专利网。