[发明专利]一种基于LightGBM分类与表示学习的姓名消歧方法和系统有效
申请号: | 202111153524.0 | 申请日: | 2021-09-29 |
公开(公告)号: | CN113962293B | 公开(公告)日: | 2022-10-14 |
发明(设计)人: | 董昊;宁致远;杜一;周园春 | 申请(专利权)人: | 中国科学院计算机网络信息中心 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06F40/30;G06F40/289;G06F16/36;G06N20/00 |
代理公司: | 北京君尚知识产权代理有限公司 11200 | 代理人: | 邱晓锋 |
地址: | 100190 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明面向科学文献数据,针对文献中作者同名现象提出一种基于LightGBM分类与表示学习的姓名消歧方法和系统。监督学习部分利用特征工程提取训练集论文的元信息特征和论文间的关联信息特征,通过采样构建正例与负例样本对数据集,作为LightGBM二分类模型的输入,模型输出作为两篇论文属于同一作者的概率。表示学习部分引用word2vec文本语义表示方法和基于元路径的关系网络表征方法,来捕捉论文的语义信息和论文之间的关系特征。最后,基于监督模型和表示学习模型的输出,利用层次聚类算法对待消歧论文集进行簇划分,实现同名消歧。本发明能够在不损失精确率与召回率的前提下,达到高可扩展性与稳定性,并且可以完全实现并行化计算,以加快执行效率。 | ||
搜索关键词: | 一种 基于 lightgbm 分类 表示 学习 姓名 方法 系统 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院计算机网络信息中心,未经中国科学院计算机网络信息中心许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202111153524.0/,转载请声明来源钻瓜专利网。