[发明专利]一种基于混合监督学习的表面异常检测方法有效

专利信息
申请号: 202111161614.4 申请日: 2021-09-30
公开(公告)号: CN113870230B 公开(公告)日: 2022-08-02
发明(设计)人: 张辉;赵晨阳;李晨;廖德;刘优武;王耀南;毛建旭 申请(专利权)人: 湖南大学
主分类号: G06T7/00 分类号: G06T7/00;G06V10/774;G06V10/82;G06K9/62;G06N3/04
代理公司: 长沙市护航专利代理事务所(特殊普通合伙) 43220 代理人: 莫晓齐
地址: 410082 湖*** 国省代码: 湖南;43
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明具体公开了一种基于混合监督学习的表面异常检测方法。所述方法包括以下步骤:首先获取表面正常的正常样本以及表面异常的异常样本并进行预处理;并构建包括异常定位网络、自注意力网络和异常判别网络的神经网络模型,然后将预处理数据输入神经网络模型中进行训练以获取异常检测神经网络模型;最后将待测图像数据输入异常检测神经网络模型中,进而能够自动判别待测图像是否存在异常以及对异常区域进行定位。本发明中只需要对少量异常样本进行粗糙标注,无需提供大量精细标注的缺陷样本作为训练样本,减轻了全监督学习的高精度标注需求,大大降低了标注成本,提高了检测效率,能够准确高效完成工业表面检测任务。
搜索关键词: 一种 基于 混合 监督 学习 表面 异常 检测 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于湖南大学,未经湖南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202111161614.4/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top