[发明专利]基于Transformer的标记选择和合并的表情识别方法及系统有效
申请号: | 202111224946.2 | 申请日: | 2021-10-21 |
公开(公告)号: | CN113705541B | 公开(公告)日: | 2022-04-01 |
发明(设计)人: | 雷震;杨阳;陶建华;翁敦芳 | 申请(专利权)人: | 中国科学院自动化研究所 |
主分类号: | G06V40/16 | 分类号: | G06V40/16;G06V10/26;G06V10/82;G06N3/04;G06N3/08 |
代理公司: | 北京华夏泰和知识产权代理有限公司 11662 | 代理人: | 李永叶 |
地址: | 100190 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: |
本发明提供基于Transformer的标记选择和合并的表情识别方法及系统,包括:将图像分割成不重叠的斑块,并通过线性投影映射到一个D维度的特征向量,构成标记嵌入向量;将其输入第一Transformer网络,得到标记特征;动态地加入 |
||
搜索关键词: | 基于 transformer 标记 选择 合并 表情 识别 方法 系统 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院自动化研究所,未经中国科学院自动化研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202111224946.2/,转载请声明来源钻瓜专利网。
- 上一篇:考虑边界优化的拓扑优化方法、系统及存储介质
- 下一篇:一种立式机床
- 基于Transformer+LSTM神经网络模型的商品销量预测方法及装置
- 一种基于Transformer模型自然场景文字识别方法
- 一种深度Transformer级联神经网络模型压缩算法
- 点云分割方法、系统、介质、计算机设备、终端及应用
- 基于Transformer的中文智能对话方法
- 一种基于改进Transformer模型的飞行器故障诊断方法和系统
- 一种基于Transformer模型的机器翻译模型优化方法
- 基于Transformer和增强交互型MPNN神经网络的小分子表示学习方法
- 基于U-Transformer多层次特征重构的异常检测方法及系统
- 基于EfficientDet和Transformer的航空图像中的飞机检测方法