[发明专利]一种基于并行CNN-Transformer神经网络的运动想象脑电信号分类方法在审
申请号: | 202111260895.9 | 申请日: | 2021-10-28 |
公开(公告)号: | CN113887513A | 公开(公告)日: | 2022-01-04 |
发明(设计)人: | 罗元;任科;何小义 | 申请(专利权)人: | 重庆邮电大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06N3/04;G06N3/08 |
代理公司: | 重庆市恒信知识产权代理有限公司 50102 | 代理人: | 李金蓉 |
地址: | 400065 重*** | 国省代码: | 重庆;50 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于并行CNN‑Transformer神经网络的运动想象脑电信号分类方法,包括S1,对运动想象脑电信号进行预处理;S2,在预处理后的运动想象脑电信号中添加噪声来扩充数据;S3,对步骤S1和步骤S2处理后的运动想象脑电信号进行时频分析生成包含时间特征、频率特征和位置信息的二维特征图;S4,构建CNN模型,设置网络参数,提取二维特征图中的频率特征和位置信息;S5,构建Transformer模型,设置网络参数,提取二维特征图中的时间特征;S6,将步骤S4和步骤S5提取的特征进行串联,并输入到分类器得到运动想象分类结果。通过在数据集BCI competition IV dataset 2b上进行验证,并与近年来具有良好表现的运动想象分类方法进行比较,实验结果表明,本发明有更好的分类性能。 | ||
搜索关键词: | 一种 基于 并行 cnn transformer 神经网络 运动 想象 电信号 分类 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆邮电大学,未经重庆邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202111260895.9/,转载请声明来源钻瓜专利网。
- 基于Transformer+LSTM神经网络模型的商品销量预测方法及装置
- 一种基于Transformer模型自然场景文字识别方法
- 一种深度Transformer级联神经网络模型压缩算法
- 点云分割方法、系统、介质、计算机设备、终端及应用
- 基于Transformer的中文智能对话方法
- 一种基于改进Transformer模型的飞行器故障诊断方法和系统
- 一种基于Transformer模型的机器翻译模型优化方法
- 基于Transformer和增强交互型MPNN神经网络的小分子表示学习方法
- 基于U-Transformer多层次特征重构的异常检测方法及系统
- 基于EfficientDet和Transformer的航空图像中的飞机检测方法