[发明专利]一种基于深度学习与智能优化的中压断路器故障诊断方法在审
申请号: | 202111276801.7 | 申请日: | 2021-10-29 |
公开(公告)号: | CN113988136A | 公开(公告)日: | 2022-01-28 |
发明(设计)人: | 张丹;黄钟汀;陈永毅 | 申请(专利权)人: | 浙江工业大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62;G06N3/00;G06N3/04;G06N3/08;G06N20/10 |
代理公司: | 杭州浙科专利事务所(普通合伙) 33213 | 代理人: | 汤明 |
地址: | 310014 *** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于深度学习与智能优化的中压断路器故障诊断方法,包括以下步骤:1)采集正常状态、脱扣闭合电磁铁堵塞、主轴堵塞和半轴堵塞的中压断路器振动信号作为原始数据集;2)将训练集数据和测试集数据进行归一化处理;3)构建CNN深度神经网络模型;4)将训练好的CNN深度神经网络模型结合量子粒子群算法对SVM分类器进行优化训练;5)将测试样本数据输入到训练好的故障诊断模型中进行断路器故障诊断。本发明利用卷积神经网络提取特征能力强的优点,有效提取数据特征;进一步利用量子粒子群算法能有效消除局部最优现象的优点,提高了数据分类的准确度。 | ||
搜索关键词: | 一种 基于 深度 学习 智能 优化 断路器 故障诊断 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江工业大学,未经浙江工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202111276801.7/,转载请声明来源钻瓜专利网。