[发明专利]一种基于深度学习的客户流失预测方法在审
申请号: | 202111386337.7 | 申请日: | 2021-11-22 |
公开(公告)号: | CN114066075A | 公开(公告)日: | 2022-02-18 |
发明(设计)人: | 杜婧;杨青;王斌;李应炜;何宁;袁渊;高媛;陈若雅;杜沛 | 申请(专利权)人: | 中国农业银行股份有限公司陕西省分行 |
主分类号: | G06Q10/04 | 分类号: | G06Q10/04;G06Q40/02;G06N3/04;G06N3/08 |
代理公司: | 西安维赛恩专利代理事务所(普通合伙) 61257 | 代理人: | 刘春 |
地址: | 710075 陕*** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于深度学习的客户流失预测方法,包括:步骤1:获取银行客户的个人信息数据;步骤2:利用生成式对抗填补网络模型,对步骤1中获取的个人信息数据进行缺失值填补,再对填补后的个人信息数据进行最大‑最小归一化处理;步骤3:搭建MSDCNN‑LSTM预测模型,步骤4:训练MSDCNN‑LSTM预测模型;步骤5:将客户数据输入到经步骤4训练好的MSDCNN‑LSTM预测模型,得到待测客户的流失概率。其解决了传统机器学习方法在预测大数据下银行客户流失概率时效率低的问题。 | ||
搜索关键词: | 一种 基于 深度 学习 客户 流失 预测 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国农业银行股份有限公司陕西省分行,未经中国农业银行股份有限公司陕西省分行许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202111386337.7/,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06 计算;推算;计数
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理