[发明专利]一种基于路径规划的深度强化学习智能车行为决策方法在审

专利信息
申请号: 202111460431.2 申请日: 2021-12-01
公开(公告)号: CN114153213A 公开(公告)日: 2022-03-08
发明(设计)人: 赵海艳;靳英豪;卢星昊;刘万;陈虹 申请(专利权)人: 吉林大学
主分类号: G05D1/02 分类号: G05D1/02
代理公司: 深圳市洪荒之力专利代理有限公司 44541 代理人: 李青
地址: 130012 吉*** 国省代码: 吉林;22
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于路径规划的深度强化学习智能车行为决策方法,属于智能车自动驾驶技术领域,所述一种基于路径规划的深度强化学习智能车行为决策方法包括将任务建模为马尔科夫决策过程,搭建深度强化学习算法,智能体输入设计,智能体输出设计,搭建训练网络结构,对任务环境进行路径规划,改进奖励函数,以及训练和测试智能体模型,具有处理复杂决策、简化仿真场景到实际应用的过程、解决了训练速度慢和难以收敛的问题以及提高智能体模型的实际泛化能力的优点。
搜索关键词: 一种 基于 路径 规划 深度 强化 学习 智能 车行 决策 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于吉林大学,未经吉林大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202111460431.2/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top