[发明专利]一种结合小波变换和张量网络的医学图像分类方法在审

专利信息
申请号: 202111475762.3 申请日: 2021-12-06
公开(公告)号: CN113989576A 公开(公告)日: 2022-01-28
发明(设计)人: 赖红;黄延 申请(专利权)人: 西南大学
主分类号: G06V10/764 分类号: G06V10/764;G06V10/52;G06V10/82;G06K9/62;G06N10/00;G06N3/04;G06N3/08
代理公司: 重庆敏创专利代理事务所(普通合伙) 50253 代理人: 陈千
地址: 400715*** 国省代码: 重庆;50
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明涉及医学图像分类技术领域,具体公开了一种结合小波变换和张量网络的医学图像分类方法,提出了一种粗粒化网络,该粗粒化网络结合了小波变换和MERA,即将D4小波编码到MERA中,形成一个内部参数固定的waveletMERA模型,并且还构建了一个如全连接层般的张量分类网络。本发明使用MNIST数据集、Covid‑19数据集和LIDC数据集进行多维验证,结果表明waveletMERA的准确率稳定居高,比CNNs的深度神经网络具有更好的粗粒化能力,使waveletMERA能够在保证精度的同时,更大程度上减少模型的参数量。结果表明waveletMERA不仅在分类上优于当前主流的深度神经网络,而且在数据预处理方面也优于普通小波变换。不仅如此,waveletMERA还具有张量网络本身的可解释性优势。
搜索关键词: 一种 结合 变换 张量 网络 医学 图像 分类 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西南大学,未经西南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202111475762.3/,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top