[发明专利]基于自适应滤波的图卷积神经网络池化方法在审

专利信息
申请号: 202111503170.8 申请日: 2021-12-10
公开(公告)号: CN114169504A 公开(公告)日: 2022-03-11
发明(设计)人: 顾军华;李鑫航;杨亮;张亚娟;牛炳鑫;郑子辰;李宁宁 申请(专利权)人: 河北工业大学
主分类号: G06N3/04 分类号: G06N3/04;G06N3/08
代理公司: 天津翰林知识产权代理事务所(普通合伙) 12210 代理人: 蔡运红
地址: 300130 天津市红桥区*** 国省代码: 天津;12
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明为基于自适应滤波的图卷积神经网络池化方法,该方法提出了自适应滤波图卷积神经网络SFGCN和自适应滤波图卷积神经网络的池化操作SFGPool,SFGCN具有低通滤波器、高通滤波器和带通滤波器,对池化操作的输入进行了增强,相比于传统的图卷积网络,补充了中频和高频信息,防止信息丢失从而增强了网络的拟合能力;自适应滤波图卷积神经网络引入两个可学习参数,能在训练过程中对滤波器的频率特性进行自适应调节,对于不同的图分类任务可通过可学习参数控制每个频段的贡献。
搜索关键词: 基于 自适应 滤波 图卷 神经网络 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于河北工业大学,未经河北工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202111503170.8/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top