[发明专利]级联空谱特征融合与核极限学习机的高光谱图像分类方法及系统在审
申请号: | 202210031944.X | 申请日: | 2022-01-12 |
公开(公告)号: | CN114511735A | 公开(公告)日: | 2022-05-17 |
发明(设计)人: | 徐洋;孙亚萍;吴泽彬;韦志辉 | 申请(专利权)人: | 南京理工大学 |
主分类号: | G06V10/764 | 分类号: | G06V10/764;G06V10/80;G06V10/82;G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 南京理工大学专利中心 32203 | 代理人: | 陈鹏 |
地址: | 210094 *** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种级联空谱特征融合与核极限学习机的高光谱图像分类方法及系统,方法包括:对高光谱图像进行归一化预处理操作,并将数据集分为训练集和测试集;使用空‑谱注意力残差神经网络对输入的高光谱图像进行卷积来分别获取空间和光谱信息;利用训练好的网络对测试集的数据进行空‑谱特征提取,在对该神经网络进行训练的同时计算出核极限学习机隐藏层的输出权重矩阵,之后将提取的特征以及输出权重矩阵输入到核极限学习机中,从而达到对高光谱图像的分类目的。本发明充分利用高光谱图像光谱注意力信息和空间注意力信息,能够对高光谱遥感数据进行深度的特征提取从而快速精确的分类。 | ||
搜索关键词: | 级联 特征 融合 极限 学习机 光谱 图像 分类 方法 系统 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京理工大学,未经南京理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202210031944.X/,转载请声明来源钻瓜专利网。
- 上一篇:地质灾害模型展示方法
- 下一篇:一种口腔科牙科医疗废水处理设备