[发明专利]对基于深度学习的检测网络进行自监督学习的方法及装置在审
申请号: | 202210119377.3 | 申请日: | 2022-02-08 |
公开(公告)号: | CN115130644A | 公开(公告)日: | 2022-09-30 |
发明(设计)人: | 柳宇宙;康凤男;诸泓模 | 申请(专利权)人: | 斯特拉德视觉公司 |
主分类号: | G06N3/04 | 分类号: | G06N3/04;G06N3/08 |
代理公司: | 北京同立钧成知识产权代理有限公司 11205 | 代理人: | 延美花;黄健 |
地址: | 韩国庆*** | 国省代码: | 暂无信息 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开使用深度Q网络对基于深度学习的检测网络进行自监督学习的方法及用其的装置,包括:通过使用学习数据库训练的检测网络对第1未标记图像进行目标检测以生成第1目标检测信息,通过深度Q网络对与第1目标检测信息对应的第1状态集进行学习运算生成Q值,Q值的动作对应于第1未标记图像的接受时,对通过使用将第1未标记图像的标记图像作为学习数据添加的学习数据库来重新训练的检测网络进行测试以生成第1准确度,动作对应于第1未标记图像拒绝时,在无重新训练的情况下测试检测网络以生成第2准确度,生成第1状态集、动作、针对第1准确度或第2准确度的奖励及第2未标记图像的第2状态集作为转换向量,使用转换向量训练深度Q网络。 | ||
搜索关键词: | 基于 深度 学习 检测 网络 进行 监督 方法 装置 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于斯特拉德视觉公司,未经斯特拉德视觉公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202210119377.3/,转载请声明来源钻瓜专利网。
- 上一篇:搬送装置
- 下一篇:一种基于逆向动力学对翼伞进行弦向折叠的方法