[发明专利]基于目标检测模型特征向量迁移的对抗样本生成方法在审
申请号: | 202210160129.3 | 申请日: | 2022-02-21 |
公开(公告)号: | CN114549933A | 公开(公告)日: | 2022-05-27 |
发明(设计)人: | 毛云龙;袁新雨;华景煜;仲盛 | 申请(专利权)人: | 南京大学 |
主分类号: | G06V10/774 | 分类号: | G06V10/774;G06V10/764;G06V10/80;G06V10/82;G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 南京乐羽知行专利代理事务所(普通合伙) 32326 | 代理人: | 李培 |
地址: | 210000 江苏*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于目标检测模型特征向量迁移的对抗样本生成方法,包括如下步骤:步骤S1、卷积神经网络特征向量迁移;步骤S2、对抗噪声的生成,步骤S3、对抗样本攻击效果评估。本发明对抗样本在目标检测等深度学习模型中攻击效果更强,并且在兼顾攻击隐蔽性的前提下具备更好的可迁移性。本发明对抗样本生成方法揭示了特征向量在目标检测模型的对抗机制中发挥的重要作用,验证了本发明所述的对抗样本的攻击威胁,能够启发探索鲁棒性目标检测算法领域的研究,以此设计出新的防御机制,对于目标检测模型在实际生活中的应用有着重要意义。 | ||
搜索关键词: | 基于 目标 检测 模型 特征向量 迁移 对抗 样本 生成 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京大学,未经南京大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202210160129.3/,转载请声明来源钻瓜专利网。