[发明专利]一种基于网络增长和逼近论的图像分类方法在审
申请号: | 202210202362.3 | 申请日: | 2022-03-03 |
公开(公告)号: | CN114565796A | 公开(公告)日: | 2022-05-31 |
发明(设计)人: | 刘波;张翔宇 | 申请(专利权)人: | 北京工业大学 |
主分类号: | G06V10/764 | 分类号: | G06V10/764;G06V10/774;G06V10/82;G06K9/62;G06N3/04;G06N3/06;G06N3/08 |
代理公司: | 北京思海天达知识产权代理有限公司 11203 | 代理人: | 张慧 |
地址: | 100124 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及一种基于网络增长和逼近论的图像分类方法,属于深度学习领域。使用神经网络对图像分类时,由于网络学习能力和数据集噪声等影响,在图像数据集的样本空间某些区域必然存在误差。本发明从该问题出发,利用逼近论的思想,对每个存在误差的区域使用本发明设计的自适应网络补偿误差,通过增加整体网络规模将样本空间所有误差区域的误差均下降到0。每个增加的自适应网络根据输入图像大小、通道数和样本空间划分数按照预先设计的神经元单元堆叠形成。本方法和逼近论结合,适用于动态变化的数据集,通过网络增长不断学习图像数据集特征,迭代减小分类误差,提高图像数据集分类正确率,减少参数训练次数,加快图像分类速度。 | ||
搜索关键词: | 一种 基于 网络 增长 逼近 图像 分类 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京工业大学,未经北京工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202210202362.3/,转载请声明来源钻瓜专利网。