[发明专利]基于学习因子图的数据与模型联合驱动的信号检测方法有效

专利信息
申请号: 202210245167.9 申请日: 2022-03-10
公开(公告)号: CN114614920B 公开(公告)日: 2023-06-30
发明(设计)人: 徐友云;兰媛媛;王小明;蒋锐;李大鹏;胡静 申请(专利权)人: 南京邮电大学
主分类号: H04B17/29 分类号: H04B17/29;H04B17/391;G06F18/241;G06N3/0442;G06N3/0464;G06N3/08
代理公司: 南京正联知识产权代理有限公司 32243 代理人: 王素琴
地址: 210003 江苏*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提供一种基于学习因子图的数据与模型联合驱动的信号检测方法,通过收集通信的发送数据X与接收数据Y;搭建CNN‑BiLSTM网络作为分类神经网络;使用基于Akaike信息准则的混合高斯模型去拟合信道接收数据Y的分布,得到边缘概率密度;模式识别网络重构训练集,对CNN‑BiLSTM网络进行线下训练,得到条件概率密度;计算得到通过因子图的消息传递算法实现信号检测所需要的因子节点;根据有限记忆信道的记忆长度与学习到的因子节点在学习因子图上进行前向后向的消息传递算法,实现最大后验概率准则下的信号检测;该方法能够在不需要信道知识的无信道模型中实现接近最优的信号检测性能,具有更准确的检测结果,且对不确定性训练的具有优秀的鲁棒性。
搜索关键词: 基于 学习 因子 数据 模型 联合 驱动 信号 检测 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京邮电大学,未经南京邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202210245167.9/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top