[发明专利]基于双边特征金字塔网络与多尺度鉴别的本质图像分解方法研究在审
申请号: | 202210290919.3 | 申请日: | 2022-03-23 |
公开(公告)号: | CN114612727A | 公开(公告)日: | 2022-06-10 |
发明(设计)人: | 蒋晓悦;王众鹏;冯晓毅;夏召强;韩逸飞 | 申请(专利权)人: | 西北工业大学 |
主分类号: | G06V10/764 | 分类号: | G06V10/764;G06V10/774;G06V10/80;G06V10/82;G06V10/46;G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 710072 陕西*** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 针对本质图像分解任务,本发明提出了一种并行局部分频选择的重构方法,可实现对反射图和光照图的准确重构。本质图像分解是一个欠约束问题。基于编解码网络的本质图像重构提供了一个有效的解决方案,但该方案的结果仍存在不足,因此,需要对各个频段的信息做更加精准的选择才能获得更加准确的分解结果。本发明提出的网络结构将两个并行的生成对抗网络作为主体网络,分别对反射图和光照图进行重构。针对生成网络,本发明提出了局部分频特征融合的策略,分别实现对高频反射特征和低频光照特征的选择和保留。同时,本发明在鉴别器中加入了多尺度的自适应组合模块,对多尺度特征的贡献进行自适应评估,强化鉴别效果并提升生成效果。进一步,本发明构建了多种损失函数来约束生成结果并促进网络的训练。本发明所提算法在多种数据集上都表现优异。在MPI‑Sintel数据集中,本发明相比其他方法的最优结果的重构均方误差降低了13.26%;在ShapeNet数据集中,本发明相比其他方法的最优结果的重构均方误差降低了26.09%。 | ||
搜索关键词: | 基于 双边 特征 金字塔 网络 尺度 鉴别 本质 图像 分解 方法 研究 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西北工业大学,未经西北工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202210290919.3/,转载请声明来源钻瓜专利网。