[发明专利]基于DRS-VGG的端到端深度学习拉曼光谱数据分类方法在审
申请号: | 202210368912.9 | 申请日: | 2022-04-08 |
公开(公告)号: | CN114692773A | 公开(公告)日: | 2022-07-01 |
发明(设计)人: | 周猛飞;胡寅朝;郭添;余奇清;孙小方;蔡亦军 | 申请(专利权)人: | 浙江工业大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06N3/04;G06N3/08;G06T3/40 |
代理公司: | 杭州求是专利事务所有限公司 33200 | 代理人: | 陈升华 |
地址: | 310014 浙*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开一种基于Deep Residual Shrinkage‑VGG的端到端深度学习的分类方法,包括:获取拉曼光谱数据,进行一阶样条插值处理且补零,随机打乱后划分成训练集、验证集和测试集;构建一个基于Deep ResidualShrinkage‑VGG的端到端深度学习的分类模型;使用训练集训练该分类模型,使用验证集对模型的超参数进行调整;使用测试集测试该性能。本发明提出的方法,无需光谱数据校正预处理,适用于高噪声、小样本、超多分类的拉曼光谱数据,提高了拉曼光谱数据分类问题的正确率与适用性,在一定程度上改善了深层深度学习网络模型的训练过慢的问题。 | ||
搜索关键词: | 基于 drs vgg 端到端 深度 学习 光谱 数据 分类 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江工业大学,未经浙江工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202210368912.9/,转载请声明来源钻瓜专利网。