[发明专利]一种无监督学习的电池生产工艺异常波动检测方法在审
申请号: | 202210375802.5 | 申请日: | 2022-04-11 |
公开(公告)号: | CN114648076A | 公开(公告)日: | 2022-06-21 |
发明(设计)人: | 何志伟;赵宾杰;官思伟;董哲康;高明煜 | 申请(专利权)人: | 杭州电子科技大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 杭州君度专利代理事务所(特殊普通合伙) 33240 | 代理人: | 杨舟涛 |
地址: | 310018 浙*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种无监督学习的电池生产工艺异常波动检测方法,本发明提出的特征融合重建网络中编码器网络通过多层卷积操作对输入的多通道特征矩阵进行空间上的特征提取。ConvLSTM网络提取输入的多通道特征矩阵序列在不同时间步长中的时间特征,完成数据的特征捕捉,同时在此基础上添加的注意力机制可以完成权重分配,将更多的注意力权重分配给关键的特征并减少噪声的干扰。通过译码器网络可以解码在上一步获得的特征映射,同时,利用特征矩阵信息的非对称能力来构造特征提取矩阵,从而增强各层之间的特征重用性。分层特征融合模型增加各层之间的特征交互,使得模型能够感知更多的特征维度和时间维度的信息。 | ||
搜索关键词: | 一种 监督 学习 电池 生产工艺 异常 波动 检测 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于杭州电子科技大学,未经杭州电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202210375802.5/,转载请声明来源钻瓜专利网。