[发明专利]基于深度学习融合网络的字符非分割模式车牌识别方法在审

专利信息
申请号: 202210943681.X 申请日: 2022-08-08
公开(公告)号: CN116524480A 公开(公告)日: 2023-08-01
发明(设计)人: 赵池航;化丽茹;苏子钧;吴宇航;马欣怡 申请(专利权)人: 东南大学
主分类号: G06V20/62 分类号: G06V20/62;G06V20/54;G06V10/82;G06V30/19;G06V10/80;G06N3/045;G06N3/0464;G06N3/047;G06N3/048
代理公司: 南京众联专利代理有限公司 32206 代理人: 景鹏飞
地址: 210096 *** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于深度学习融合网络的字符非分割模式车牌识别方法,包括以下步骤:对高速整车图像的车牌区域进行检测并构建高速公路车牌图像集;基于基于CTC损失函数与ResNet50‑LPR卷积神经网络block1、block3、block5这三层输出的车辆号牌图像特征向量进行串联融合,构建融合模型FResNet50;基于车牌识别的注意力编码方式,在FResNet50融合模型后添加注意力编码模块,完成FResNet50‑Attention深度学习融合网络模型的构建;使用高速公路车牌图像集对构建好的FResNet50‑Attention卷积神经网络模型进行训练,最终完成对车辆号牌的识别。本发明的识别性能优于单一的ResNet50‑LPR卷积神经网络和传统融合方式下的FResNet50卷积神经网络融合模型,其对于整副车牌的识别准确率达到了93.224%。
搜索关键词: 基于 深度 学习 融合 网络 字符 分割 模式 车牌 识别 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东南大学,未经东南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202210943681.X/,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top