[发明专利]一种基于分层负采样的网络表示学习方法在审

专利信息
申请号: 202211007471.6 申请日: 2022-08-22
公开(公告)号: CN115422445A 公开(公告)日: 2022-12-02
发明(设计)人: 陈俊扬;伍楷舜;巩志国;戴志江 申请(专利权)人: 深圳大学
主分类号: G06F16/9535 分类号: G06F16/9535;G06F16/9536;G06F16/9538;G06K9/62;G06N3/04;G06N3/08;G06N5/04
代理公司: 北京市诚辉律师事务所 11430 代理人: 耿慧敏;朱伟军
地址: 518060 广东*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于分层负采样的网络表示学习方法。该方法包括:针对图网络获取一组随机游走序列,每个游走序列由一组顶点组成;对于每组随机游走序列,对顶点的领域信息进行建模,以确定目标顶点的潜在社区结构;基于所述潜在社区结构,为各顶点计算其为目标顶点的负样本的概率,以采样负样本;基于所采样的负样本优化设定的目标函数,进而确定顶点表示学习向量。本发明可以自适应地发现顶点的潜在社区结构,并根据社区的顶点相关性的概率分布,学习获得更合理的负样本,从而提升顶点表示学习向量的性能。
搜索关键词: 一种 基于 分层 采样 网络 表示 学习方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于深圳大学,未经深圳大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202211007471.6/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top