[发明专利]一种非独立同分布数据场景下的联邦学习隐私保护方法在审
申请号: | 202211081816.2 | 申请日: | 2022-08-31 |
公开(公告)号: | CN115374479A | 公开(公告)日: | 2022-11-22 |
发明(设计)人: | 张轶凡;张一晋;马川 | 申请(专利权)人: | 南京理工大学 |
主分类号: | G06F21/62 | 分类号: | G06F21/62;G06K9/62 |
代理公司: | 南京鼎傲知识产权代理事务所(普通合伙) 32327 | 代理人: | 刘蔼民 |
地址: | 210094 江苏省南*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明属于隐私保护技术领域,具体涉及一种非独立同分布数据场景下的联邦学习隐私保护方法。本发明将联邦学习模型与生成对抗神经网络相结合,解决了联邦学习在非独立同分布场景下训练难收敛的问题,降低联邦学习框架内各终端的通信损耗,可以在联邦各终端算力较低的情况下提高机器利用率和学习效率。本发明所使用的ViTGAN生成对抗网络生成的近似真实数据分布的虚假数据,能够满足本地用户的隐私保证,加快联邦学习的收敛速度和降低训练通信负载,提升联邦学习训练好的全局模型和测试精度,同时解决联邦学习易受到推理攻击的问题。 | ||
搜索关键词: | 一种 独立 分布 数据 场景 联邦 学习 隐私 保护 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京理工大学,未经南京理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202211081816.2/,转载请声明来源钻瓜专利网。
- 上一篇:一种加氢反应的尾气氢的处理方法
- 下一篇:具有磁性分片机构的全自动上料装置
- 数据显示系统、数据中继设备、数据中继方法、数据系统、接收设备和数据读取方法
- 数据记录方法、数据记录装置、数据记录媒体、数据重播方法和数据重播装置
- 数据发送方法、数据发送系统、数据发送装置以及数据结构
- 数据显示系统、数据中继设备、数据中继方法及数据系统
- 数据嵌入装置、数据嵌入方法、数据提取装置及数据提取方法
- 数据管理装置、数据编辑装置、数据阅览装置、数据管理方法、数据编辑方法以及数据阅览方法
- 数据发送和数据接收设备、数据发送和数据接收方法
- 数据发送装置、数据接收装置、数据收发系统、数据发送方法、数据接收方法和数据收发方法
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置