[发明专利]通道全局排序指导剪枝和量化联合的神经网络压缩方法在审

专利信息
申请号: 202211217914.4 申请日: 2022-09-30
公开(公告)号: CN115661511A 公开(公告)日: 2023-01-31
发明(设计)人: 谢卫莹;樊潇怡;张鑫;李云松;雷杰 申请(专利权)人: 西安电子科技大学
主分类号: G06V10/764 分类号: G06V10/764;G06V10/774;G06V10/82;G06N3/0464;G06N3/0495;G06N3/082
代理公司: 陕西电子工业专利中心 61205 代理人: 陈宏社;王品华
地址: 710071*** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种通道全局排序指导剪枝和量化联合的神经网络压缩方法,包括下述步骤:获取训练样本集和测试样本集;构建图像分类卷积神经网络模型;对图像分类卷积神经网络模型进行迭代训练;计算训练好的图像分类卷积神经网络模型中所有通道的重要性得分并获取剪枝量化后的图像分类卷积神经网络模型;更新剪枝量化后的图像分类卷积神经网络模型;获取图像分类卷积神经网络的压缩结果。本发明在通道重要性的全局排序指导下对图像分类卷积神经网络模型联合进行剪枝和量化,解决了现有技术中存在的仅在同一层内比较通道重要性且剪枝和量化互不相关导致在指定压缩比下压缩后网络相比于未压缩网络的分类准确性的下降值大的问题。
搜索关键词: 通道 全局 排序 指导 剪枝 量化 联合 神经网络 压缩 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202211217914.4/,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top