[发明专利]一种基于Transformer的农作物叶片病害检测方法在审
申请号: | 202211385848.1 | 申请日: | 2022-11-07 |
公开(公告)号: | CN115620146A | 公开(公告)日: | 2023-01-17 |
发明(设计)人: | 朱节中;黄凤星;杨再强;余晓栋 | 申请(专利权)人: | 无锡学院 |
主分类号: | G06V20/10 | 分类号: | G06V20/10;G06V10/22;G06V10/774;G06V10/80;G06V10/82;G06N3/04;G06N3/08 |
代理公司: | 广州粤高专利商标代理有限公司 44102 | 代理人: | 彭晓勤 |
地址: | 214105 江苏*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于Transformer的农作物叶片病害检测方法,涉及农作物病害检测技术领域,包括以下步骤:S1、获取n幅用于模型训练的农作物叶片图像;S2、构建初始的叶片病害检测模型;S3、利用样本集训练初始的叶片病害检测模型,从而得到训练完成的叶片病害检测模型;S4、利用训练完成的叶片病害检测模型对待检测的农作物叶片图像进行检测,得到农作物叶片图像中农作物叶片病害检测结果。本发明模型采用编码器和解码器结构,编码器主要采用Transformer完成特征的提取工作,相较于传统的卷积神经网络速度更快,参数量更少;在解码器中,利用Transformer输出特征图进行特征融合的部分采用通道注意力机制,能够很好的减少模型参数量同时不会使性能下降。 | ||
搜索关键词: | 一种 基于 transformer 农作物 叶片 病害 检测 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于无锡学院,未经无锡学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202211385848.1/,转载请声明来源钻瓜专利网。
- 基于Transformer+LSTM神经网络模型的商品销量预测方法及装置
- 一种基于Transformer模型自然场景文字识别方法
- 一种深度Transformer级联神经网络模型压缩算法
- 点云分割方法、系统、介质、计算机设备、终端及应用
- 基于Transformer的中文智能对话方法
- 一种基于改进Transformer模型的飞行器故障诊断方法和系统
- 一种基于Transformer模型的机器翻译模型优化方法
- 基于Transformer和增强交互型MPNN神经网络的小分子表示学习方法
- 基于U-Transformer多层次特征重构的异常检测方法及系统
- 基于EfficientDet和Transformer的航空图像中的飞机检测方法