[发明专利]一种基于深度强化学习的公路裂缝图像分割方法在审
申请号: | 202211602192.4 | 申请日: | 2022-12-13 |
公开(公告)号: | CN115797311A | 公开(公告)日: | 2023-03-14 |
发明(设计)人: | 高新闻;童佰锐;胡珉;周丽 | 申请(专利权)人: | 上海大学 |
主分类号: | G06T7/00 | 分类号: | G06T7/00;G06T7/11;G06T7/194 |
代理公司: | 上海上大专利事务所(普通合伙) 31205 | 代理人: | 何文欣 |
地址: | 200444*** | 国省代码: | 上海;31 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于深度强化学习的公路裂缝图像分割方法。1)对公路裂缝图像进行预处理,提高其对比度;2)使用基于深度学习的分割网络算法获取公路裂缝图像的分割结果;3)设置由分割网络输出的分割结果作为DoubleDQN算法的初始状态;设置像素值范围[100,255]作为深度强化学习中智能体的动作空间,该空间也是分割结果调整的像素值基准点;4)通过DoubleDQN算法对裂缝图像的粗分割结果不断进行迭代优化;5)在获得最佳分割结果后使用分割算法的评价指标IoU、Recall和F1分数对算法的分割性能进行评估。本发明优化了分割结果,相比单纯使用深度学习方法获得的分割结果,使用本发明方法迭代优化后裂缝分割结果更加精细,这极大地提高了公路健康状态评估的准确性。 | ||
搜索关键词: | 一种 基于 深度 强化 学习 公路 裂缝 图像 分割 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于上海大学,未经上海大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202211602192.4/,转载请声明来源钻瓜专利网。
- 上一篇:一种数控锥齿轮加工机床
- 下一篇:一种离心纺丝圆盘式收集装置及其使用方法