[发明专利]基于图神经网络的社区发现方法在审
申请号: | 202310043047.5 | 申请日: | 2023-01-29 |
公开(公告)号: | CN116304773A | 公开(公告)日: | 2023-06-23 |
发明(设计)人: | 施振佺;王博文;施佺;罗奇才;张翁坚;黄子玲;冯季;孙凡 | 申请(专利权)人: | 南通大学 |
主分类号: | G06F18/23213 | 分类号: | G06F18/23213;G06F18/2135;G06N3/042;G06N3/045 |
代理公司: | 南京瑞弘专利商标事务所(普通合伙) 32249 | 代理人: | 秦秋星 |
地址: | 226019 江苏*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开一种基于图神经网络的社区发现方法,包括:将节点信息转换成one‑hot向量作为初始特征值;对one‑hot向量进行PCA降维,计算降维后目标节点与其他节点的特征相似度,学习到目标节点在特征视图下的节点表征;在元路径内和元路径间使用注意力机制,学习到目标节点在元路径视图下的节点表征;分层聚合邻居节点的信息,学习到目标节点在结构视图下的节点表征;拼接三种节点表征,学习到目标节点最终的节点表征;通过最小化交叉熵损失函数来优化模型;通过对生成的节点表征进行k‑means划分成不同的社区。本发明考虑了节点元路径视图下的信息以及特征视图和结构视图下的信息,提高了学习到的节点信息的丰富性与完整性,提高了表征的质量,使发现的社区更为精准。 | ||
搜索关键词: | 基于 神经网络 社区 发现 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南通大学,未经南通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202310043047.5/,转载请声明来源钻瓜专利网。