[发明专利]全局模型的训练方法、装置及电子设备在审

专利信息
申请号: 202310118884.X 申请日: 2023-01-31
公开(公告)号: CN116361642A 公开(公告)日: 2023-06-30
发明(设计)人: 霍炎;范新;高青鹤;荆涛;高勃;朱明皓;王晓轩;卢燕飞;周春月;王光宇 申请(专利权)人: 北京交通大学
主分类号: G06F18/214 分类号: G06F18/214;G06F18/24;G06N3/0475;G06N3/098
代理公司: 北京风雅颂专利代理有限公司 11403 代理人: 金含
地址: 100044 北*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 本申请提供一种全局模型的训练方法、装置及电子设备,应用于联邦学习系统,所述联邦学习系统包括服务器和多个分布式设备,在所述服务器中部署全局模型,分别在每个分布式设备中部署局部模型,所述全局模型和每个局部模型均设置有特征提取器、鉴别器和分类器,所述特征提取器和所述鉴别器组成生成对抗网络;所述方法包括利用所述服务器对所述全局模型进行参数初始化;利用所述服务器和所述多个分布式设备对经过所述参数初始化的全局模型进行多轮迭代训练,直至所述全局模型满足收敛条件为止,得到训练完成的全局模型,解决了现有技术中联邦学习的不同分布式设备的数据具有异质性的技术问题,提升了联邦学习的性能目的。
搜索关键词: 全局 模型 训练 方法 装置 电子设备
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京交通大学,未经北京交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202310118884.X/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top