[发明专利]一种基于自监督学习的超声图像模拟方法在审
申请号: | 202310154824.3 | 申请日: | 2023-02-23 |
公开(公告)号: | CN116030037A | 公开(公告)日: | 2023-04-28 |
发明(设计)人: | 彭博;陈重兴;李艳;王一帆;周文俊;张全 | 申请(专利权)人: | 西南石油大学 |
主分类号: | G06T7/00 | 分类号: | G06T7/00;G06T7/11;G06N3/0464;G06N3/0895 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 610500 四*** | 国省代码: | 四川;51 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供一种基于自监督学习的超声图像模拟方法,包括以下步骤:首先,在CT图像或者MR图像中得到切片,得到切片后根据图像的形态学特征将组织切片图像分割成不同区域,选择感兴趣的区域;通过大量的Field II模拟的超声图像训练模型,当模型收敛后,使用训练好的模型来实时模拟超声图像。本发明采用了一种新的空间相关性损失,它简单、高效,在支持未配对图像到图像转换过程中较大的外观变化的同时,仍能有效地保持结构的一致性。本发明能够实时的完成超声图像模拟,得到的图像相对于传统卷积法效果更逼真,耗时短,具有较好的临床应用。 | ||
搜索关键词: | 一种 基于 监督 学习 超声 图像 模拟 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西南石油大学,未经西南石油大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202310154824.3/,转载请声明来源钻瓜专利网。