[发明专利]一种结合深度学习的塑封芯片内部缺陷检测方法在审
申请号: | 202310155975.0 | 申请日: | 2023-02-20 |
公开(公告)号: | CN116030039A | 公开(公告)日: | 2023-04-28 |
发明(设计)人: | 黄仙山;杨舟;程莹;陶新宇 | 申请(专利权)人: | 安徽工业大学 |
主分类号: | G06T7/00 | 分类号: | G06T7/00;G06V10/764;G06V10/774;G06V10/82;G06N3/08;G06V10/80;G06V10/42;G06N3/0464 |
代理公司: | 安徽知问律师事务所 34134 | 代理人: | 平静 |
地址: | 243002 安*** | 国省代码: | 安徽;34 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种结合深度学习的塑封芯片内部缺陷检测方法,属于芯片缺陷检测技术领域。本发明包括:S1:获取塑封芯片的超声波扫描图像,利用改进后的神经网络算法对图像进行芯片目标检测;S2:对获得的芯片图像进行传统图像算法分析,实现芯片缺陷的检测;所述的神经网络包含主干提取网络、改进后的特征融合网络和YOLOHead结构,改进后的特征融合网络将主干提取网络得到的三个特征向量经过YOLOv5网络中的金字塔特征融合FPN和PAN网络加强融合,得到加强后的特征向量,并融合原来的特征向量,得到改进后的特征融合向量。本发明结合深度学习与传统算法对超声波扫描图像进行处理,能够快速识别像素级别的缺陷类型与分布。 | ||
搜索关键词: | 一种 结合 深度 学习 塑封 芯片 内部 缺陷 检测 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于安徽工业大学,未经安徽工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202310155975.0/,转载请声明来源钻瓜专利网。