[发明专利]一种面向深度学习分层模型的协同推理方法有效

专利信息
申请号: 202310459836.7 申请日: 2023-04-26
公开(公告)号: CN116166444B 公开(公告)日: 2023-07-04
发明(设计)人: 郭永安;奚城科;周金粮;王宇翱;钱琪杰 申请(专利权)人: 南京邮电大学
主分类号: G06F9/50 分类号: G06F9/50;G06N3/08;G06N5/04
代理公司: 南京正联知识产权代理有限公司 32243 代理人: 张玉红
地址: 210023 江苏*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明属于端边协同计算领域,公开了一种面向深度学习分层模型的协同推理方法,对深度学习分层模型采取逐层分割的方案,通过边缘计算节点处理速度这一状态信息,只需做一次统一决策,即可为节点匹配计算量合适的不同层推理子任务;还使用网络遥测技术感知节点间网络状态,当出现阻塞问题时即刻对上述整体决策做出相应调整;既降低了决策复杂度,又降低推理时延的同时,同时还提高了边缘节点的资源利用率,保证资源的合理分配。
搜索关键词: 一种 面向 深度 学习 分层 模型 协同 推理 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京邮电大学,未经南京邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202310459836.7/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top