[发明专利]结合数据分布和图分析的深度学习测试样本排序方法在审
申请号: | 202310504903.2 | 申请日: | 2023-05-06 |
公开(公告)号: | CN116933048A | 公开(公告)日: | 2023-10-24 |
发明(设计)人: | 罗森林;吴肖龙;潘丽敏;王若辉;夏志豪;陆永鑫 | 申请(专利权)人: | 北京理工大学 |
主分类号: | G06F18/21 | 分类号: | G06F18/21;G06F18/214;G06F18/241;G06F18/2415;G06N3/0455;G06N3/08 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 100081 *** | 国省代码: | 北京;11 |
权利要求书: | 暂无信息 | 说明书: | 暂无信息 |
摘要: | 本发明涉及结合数据分布和图分析的深度学习测试样本排序方法,属于计算机与信息科学领域。本发明首先利用变分自编码器计算样本的LR评分,过滤不符合模型任务的样本;其次将模型各隐藏层分别全连接输出层生成子模型,根据样本在各子模型中的预测概率生成转移矩阵;然后捕获模型神经元激活值,按顺序排列构建神经元激活图并提取其邻接矩阵;最后拼接转移矩阵和邻接矩阵训练XGBoost和LightGBM模型,并几何加权两种模型对样本的输出,作为测试样本得分指导样本排序。本发明提出一种结合数据分布和图分析的方法,改善了现有深度学习测试样本排序方法缺少对样本符合模型任务的过滤机制和缺少对模型参数的充分利用的问题,提升了测试样本检测模型错误的效率。 | ||
搜索关键词: | 结合 数据 分布 分析 深度 学习 测试 样本 排序 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京理工大学,未经北京理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202310504903.2/,转载请声明来源钻瓜专利网。
- 数据显示系统、数据中继设备、数据中继方法、数据系统、接收设备和数据读取方法
- 数据记录方法、数据记录装置、数据记录媒体、数据重播方法和数据重播装置
- 数据发送方法、数据发送系统、数据发送装置以及数据结构
- 数据显示系统、数据中继设备、数据中继方法及数据系统
- 数据嵌入装置、数据嵌入方法、数据提取装置及数据提取方法
- 数据管理装置、数据编辑装置、数据阅览装置、数据管理方法、数据编辑方法以及数据阅览方法
- 数据发送和数据接收设备、数据发送和数据接收方法
- 数据发送装置、数据接收装置、数据收发系统、数据发送方法、数据接收方法和数据收发方法
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置