[发明专利]联邦边缘学习环境下模型分割优化的隐私数据保护方法在审

专利信息
申请号: 202310562355.9 申请日: 2023-05-18
公开(公告)号: CN116579418A 公开(公告)日: 2023-08-11
发明(设计)人: 胡海洋;徐帅达;李忠金 申请(专利权)人: 杭州电子科技大学
主分类号: G06N3/098 分类号: G06N3/098;G06N3/06;G06N3/04;G06N20/20;G06F21/57;G06F21/62
代理公司: 杭州君度专利代理事务所(特殊普通合伙) 33240 代理人: 朱亚冠
地址: 310018 浙*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提出一种联邦边缘学习环境下模型分割优化的隐私数据保护方法。本发明结合了隐私安全保护和模型分割动态调整策略,在满足联邦边缘学习计算任务、数据隐私安全性和边缘设备能耗控制的条件下,使得联邦边缘学习效率最大化,并提供模型分割动态调整策略。首先根据模型反演找到满足数据隐私安全性的模型分割安全点,在满足数据安全性的条件下,找到一个边缘设备能耗和训练效率的模型分割平衡点。在平衡点处进行模型分割部署的初始化。然后在训练和推理的过程中根据边缘设备的资源分配需求,动态调整模型分割点,满足复杂环境下模型训练效率最大化以及资源动态调整的需求。
搜索关键词: 联邦 边缘 学习 环境 模型 分割 优化 隐私 数据 保护 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于杭州电子科技大学,未经杭州电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202310562355.9/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top