[发明专利]一种基于半监督辅助学习语义分割的注塑制品表面缺陷检测方法在审
申请号: | 202310689490.X | 申请日: | 2023-06-12 |
公开(公告)号: | CN116934687A | 公开(公告)日: | 2023-10-24 |
发明(设计)人: | 张树有;俞子安;伊国栋 | 申请(专利权)人: | 浙江大学 |
主分类号: | G06T7/00 | 分类号: | G06T7/00;G06V10/26;G06V20/70;G06V10/82;G06N3/0464;G06N3/048;G06N3/0895;G06V10/774;G06N3/084;G06V10/764 |
代理公司: | 杭州天勤知识产权代理有限公司 33224 | 代理人: | 胡红娟 |
地址: | 310058 浙江*** | 国省代码: | 浙江;33 |
权利要求书: | 暂无信息 | 说明书: | 暂无信息 |
摘要: | 本发明公开了一种基于半监督辅助学习语义分割的注塑制品表面缺陷检测方法,包括:获取注塑制品样本图像,构建语义分割数据集和图像重建数据集;构建SSAL网络模型,将语义分割数据集和图像重建数据集中的图像输入到SSAL网络模型中进行语义分割任务和图像重建任务的交替训练;将待检测的注塑制品样本图像输入到训练好的SSAL网络模型中进行缺陷的语义分割,将不同的缺陷标记为对应的像素值,得到语义分割结果图;根据语义分割结果图,将注塑制品缺陷区域量化,得到缺陷检测结果。本发明实现了注塑制品表面缺陷的自动化检测,提高了语义分割模型在小样本数据集下对注塑制品缺陷的检测准确率和泛化能力,更好地满足了工业场景的应用需求。 | ||
搜索关键词: | 一种 基于 监督 辅助 学习 语义 分割 注塑 制品 表面 缺陷 检测 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江大学,未经浙江大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202310689490.X/,转载请声明来源钻瓜专利网。