[发明专利]一种基于动态注意力机制的联邦学习模型训练方法在审
申请号: | 202310884951.9 | 申请日: | 2023-07-18 |
公开(公告)号: | CN116957106A | 公开(公告)日: | 2023-10-27 |
发明(设计)人: | 王楠;刘娟;张大林 | 申请(专利权)人: | 北京交通大学 |
主分类号: | G06N20/00 | 分类号: | G06N20/00;G06F18/214;G06F18/24 |
代理公司: | 北京市商泰律师事务所 11255 | 代理人: | 黄晓军 |
地址: | 100044 北*** | 国省代码: | 北京;11 |
权利要求书: | 暂无信息 | 说明书: | 暂无信息 |
摘要: | 本发明提供了一种基于动态注意力机制的联邦学习模型训练方法。该方法包括:在每个通信轮次中,各客户端利用本地数据样本集和中央服务器下发的联合模型参数采用动态参数策略和最佳表现模型策略迭代训练更新本地的机器学习模型,将本轮次训练的模型参数更新信息和模型贡献度信息上传到中央服务器;中央服务器根据接收到的模型贡献度信息进行动态注意力分配,融合参数更新信息进行多模型安全聚合生成新的联合模型,下发新的联合模型参数信息给各个客户端进行同步更新,开启新一轮次的迭代训练。本发明方法能够动态捕捉各参与方本地模型训练的性能提升度,给予性能提升度大的模型更多的关注,从而改善联合模型训练迭代的流程及提升最终模型的性能。 | ||
搜索关键词: | 一种 基于 动态 注意力 机制 联邦 学习 模型 训练 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京交通大学,未经北京交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202310884951.9/,转载请声明来源钻瓜专利网。