[发明专利]离子注入法制备GaN基稀释磁性半导体材料的方法无效
申请号: | 02113082.5 | 申请日: | 2002-05-31 |
公开(公告)号: | CN1388537A | 公开(公告)日: | 2003-01-01 |
发明(设计)人: | 张荣;徐剑;修向前;郑有炓;顾书林;沈波;江若琏;施毅;韩平;朱顺明;胡立群 | 申请(专利权)人: | 南京大学 |
主分类号: | H01F1/40 | 分类号: | H01F1/40;H01F41/00;H01L21/265 |
代理公司: | 南京知识律师事务所 | 代理人: | 陈建和 |
地址: | 210093*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 离子 注入 法制 gan 稀释 磁性 半导体材料 方法 | ||
一、技术领域
本发明涉及一种利用离子注入制备GaN基稀释磁性半导体薄膜材料如GaN:Mn等的方
法。
二、技术背景
自从晶体管发明以后,半导体电子技术的所有应用都是基于电子电荷的探索。二十实际末期,大量的研究努力开始集中于电子自旋的应用。利用电子自旋波函数的量子性质(自旋电子学)的器件在光电转换,超敏感磁场传感器,特别是用于高速计算的基于量子效应的逻辑和记忆器件的研究方面获得了很大的进展。但是,由于材料的本质(如晶体结构,键,物理和化学性质)不同,直接将电子材料(半导体)和旋转材料(铁磁性金属)融合起来产生很多的问题。另一个解决办法是使用稀释磁性半导体(重掺杂磁性离子的半导体),可以直接与现有的半导体器件集成。
稀释半导体材料(Diluted Magnetic Semiconductor,DMS)是在非磁性半导体(如IV-VI族、II-VI族或III-V族)中掺杂磁性离子,利用载流子控制技术产生磁性的新型功能材料。通过改变稀释半导体材料中载流子密度可以改变磁性的大小。由于磁性离子局域磁矩与能带电子自旋存在交换作用,因此通过改变磁性杂质浓度和外磁场强度可以有效控制他们的光电、磁光、光吸收和输运特性。它同时应用了电子电荷和电子自旋性质,因而DMS器件可以直接与现有的半导体器件集成,在光、电、磁功能集成等的新型器件方面具有重要的应用。
II-VI族稀释磁性半导体材料已经广泛地被研究了。但是基于III-V族的稀释半导体还没有进行详尽地研究。目前普遍研究的(In,Mn)As和(Ga,Mn)As的居里温度(Tc)都很低(35和110K)。从实际应用的角度考虑,寻找具有更高居里温度的材料是迫切需要的。理论工作表明,宽带隙半导体如GaN和ZnO可能是室温或更高温度下能够实现载流子引起铁磁生的合适的代表性材料。由于氮化镓极其相关材料在短波段蓝色光电子学方面是最有前景的材料;而MnxGa1-xN属于具有独特磁性性质的III-V族稀释磁性半导体材料。研究已经显示,相对较低的Mn浓度足够使相对应的MnxGa1-N产生铁磁性。因此,基于GaN基的DMS半导体材料研究在最近几年获得了足够的重视。
GaN基的DMS半导体材料面临的主要困难是,目前还没有合适的生长方法直接外延生长。由于磁性离子在GaN基DMS材料中较低的溶解度,很难获得不形成第二相的外延材料。离子注入过程是一个引入不同的磁性离子进入不同主材料中的很简便的方法,与其他直接生长方法相比,能够实现较高的离子掺杂浓度,很容易被用于制备自旋极化电流注入装置结构作为选区接触区。所以,在目前没有发现较好的直接外延生长GaN基的DMS半导体材料之前,离子注入是一个令人满意的替代方法。通过离子注入,将Fe、Mn、Co或Ni等磁性离子注入GaN基半导体材料中,可以用来研究DMS材料铁磁性的起源和本质,制备出高质量的磁性半导体材料。
在本发明中,我们采用离子注入法,将磁性离子如Mn、Fe、Co或Ni等注入GaN半导体薄膜中,制备出GaN基室温铁磁性半导体薄膜材料如GaN:Mn等。
三、技术内容
DMS离子注入法是通过离子注入,将Fe、Mn、Co或Ni等磁性离子注入GaN基半导体材料中,可以用来研究DMS材料铁磁性的起源和本质,制备出高质量的磁性半导体材料。在本发明中,我们采用离子注入法,将磁性离子Mn、Fe、Co和Ni等注入GaN基半导体薄膜中,制备出具有较高居里温度的铁磁性半导体薄膜材料如GaN:Mn等。
本发明离子注入法制备GaN基稀释磁性半导体薄膜的方法,其特征是将磁性离子如Mn及Fe、Co或Ni等注入GaN半导体薄膜中,即用离子注入的方法以150~250keV的能量注入磁性离子,然后在850-900℃、NH3气氛条件下退火处理。
利用离子注入的方法,我们成功地获得了室温下的GaN基稀释磁性半导体材料。如GaN:Mn,其磁学性质如图1所示。X射线衍射结构分析表明,Mn离子被注入GaN并经过退火处理后,Mn离子基本取代了GaN晶格中Ga的位置,而不是N位或填隙式。因为Ga和Mn同属第四周期,其内层电子结构,电负性和原子半径的值相近,使得Mn占据Ga位后晶格常数没有太大变化。此外,Mn的引入导致了GaN中的深能级,并使得注入层为半绝缘材料。
本发明的机理和技术特点是:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京大学,未经南京大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/02113082.5/2.html,转载请声明来源钻瓜专利网。
- 上一篇:一种油炸薯块的生产方法
- 下一篇:一种制备聚(ε-己内酯)的方法