[发明专利]基于多光谱图像的纹理分析鉴别不同品种绿茶的方法和装置无效

专利信息
申请号: 200710069113.7 申请日: 2007-05-29
公开(公告)号: CN101059425A 公开(公告)日: 2007-10-24
发明(设计)人: 何勇;李晓丽;裘正军;陆江峰;何超 申请(专利权)人: 浙江大学
主分类号: G01N21/27 分类号: G01N21/27;G01N21/84;G01N33/00
代理公司: 杭州求是专利事务所有限公司 代理人: 林怀禹
地址: 310027浙*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 光谱 图像 纹理 分析 鉴别 不同 品种 绿茶 方法 装置
【说明书】:

技术领域

发明涉及用光学手段分析材料的方法,尤其是涉及一种基于多光谱图像的纹理分析鉴别不同品种绿茶的方法和装置。

背景技术

茶叶的品质,一般是指茶叶的色、香、味、形。同时茶叶的商品性强,美观的外形和光润的色泽是不容忽视的,而且感观审评茶叶品质的优劣,往往先审查外形(包括干茶的形状和色泽),特别是名茶,它的外形占其品质质量的30%的权重。所以茶叶的形状是组成茶叶品质的重要项目之一。我国茶类多,茶叶形状绚丽多姿,多数具有一定的艺术性,既品饮,又可欣赏,而且我国的名优茶大都有其独特的外形,比如:龙井茶外形扁平光滑,形似“碗钉”;碧螺春卷曲成螺形;而平水珠茶外形圆紧,呈颗粒状,这些独特的外形构成了不同品种绿茶独特的纹理。传统的茶叶感观审评主要是依赖审评专家的判断,由于人为操作易受环境等外界因素干扰,从而影响评定结果的准确性。为了在茶叶生产、流通过程中有一个严格、一致的标准,采用仪器测定茶叶外形指标,用科学计量上的品质指标来评价茶叶品质是必要的手段之一。机器视觉系统就是计算机数字图像处理系统,它是用计算机实现部分人类视觉的功能,把所测对象映射成数字图像,并模拟人的判别准则去理解图像和识别图像,进而对所摄图像进行分类或分级。机器视觉检测具有自动化、客观、非接触、高精度和快速等特点,对颜色和外形变化的反应也更灵敏。纹理是图像中的一个重要特征,能够反映一个区域中像素灰度空间分布的属性。纹理大致可分为两大类:一类是规则纹理,它由明确形状的纹理基本元素(纹理基元)经有规则排列而成,这一类纹理常被称为人工纹理,一般出现在工业产品中。另一类是准规则纹理,它们的纹理基元没有明确的形状,而是某种灰度或颜色的分布。这种分布在空间位置上的重复出现形成纹理,这类纹理通常被称为自然纹理,茶叶的纹理即属于自然纹理。自然纹理的描述一般采用统计分析法和频谱分析法。统计分析法中灰度共生矩阵、行程长度统计、灰度差分统计、灰度直方图、纹理滤波等都是图像纹理分析的常用方法;频谱分析法中的小波变换法、傅立叶变化法等都是最近兴起的图像纹理分析的有效方法;它们能精确的反映纹理的粗糙程度和重复方向,对于描述纹理特征起到了重要的作用。在名优茶的鉴别过程中,对于单个茶片的鉴别是相对容易的,但是需要人为的把成堆的茶叶摆放成互相不接触的单个茶片,这是一项繁重的劳动。所以研究一种能对成堆状分布(不需要人为摆放成茶片互相不接触的状态)的茶叶的品种进行鉴别是一项非常有意义的工作。

发明内容

为了更加高效、准确的区分不同品种绿茶(包括各种名优茶),需要一种无损、快速、实时的绿茶品种鉴别的方法。本发明的目的是提供了一种基于多光谱图像的纹理分析鉴别不同品种绿茶的方法和装置。能对成堆状分布(不需要人为摆放成茶片互相不接触的状态)的茶叶的品种进行鉴别。

本发明采用的技术方案是:

一、一种基于多光谱图像的纹理分析鉴别不同品种绿茶的方法:

首先建立绿茶品种鉴别的校正模型,然后在校正模型的基础上对预测样本的品种进行鉴别;该方法的步骤如下:

(一)、首先建立绿茶品种的标准鉴别模型:

1)获取图像:把绿茶校正样本集送入图像采集的硬件系统,3CCD多光谱成像仪把样本的图像采集到计算机;

2)图像预处理:对送入计算机的图像,首先诊断是否清晰,对于不清晰的图像要对图像进行校正和信息融合处理,来获得高质量的清晰的茶叶样本的图像;

3)提取图像的纹理特征:由于茶叶在线检测过程中是堆积状的,而且茶叶的纹理是自然纹理,所以运用纹理统计方法来提取纹理特征;或者结合频谱纹理统计方法来提取纹理特征;

4)特征参数的优化和筛选:用各种纹理描述方法得到的纹理特征参数,并不是都能对样本品种起到区分作用,所以必须对特征参数进行优化和筛选;通过参数之间的相关性分析来消除参数间的信息冗余、通过各个品种样本的各个参数的范围和参数的标准偏差剔出对品种鉴别不起作用或者起反作用的特征参数、通过主成分分析或者显著性分析来寻找对不同品种绿茶纹理识别起重要作用的参数;

5)建立标准鉴别模型:把优化后的特征参数输入模式识别分类器来建立品种鉴别校正模型;模型识别算法是神经网络法、多类判别分析、最小聚类分类器或支持向量机等等;

(二)、在品种鉴别校正模型的基础上对预测样本的品种进行鉴别:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江大学,未经浙江大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/200710069113.7/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top