[发明专利]人脸部件特征和Gabor人脸特征融合的人脸识别方法及其装置无效
申请号: | 200810104401.6 | 申请日: | 2008-04-18 |
公开(公告)号: | CN101276421A | 公开(公告)日: | 2008-10-01 |
发明(设计)人: | 苏光大;相燕;李匆聪 | 申请(专利权)人: | 清华大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06K9/00 |
代理公司: | 北京清亦华知识产权代理事务所 | 代理人: | 廖元秋 |
地址: | 1000*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 脸部 特征 gabor 融合 识别 方法 及其 装置 | ||
技术领域
本发明属于图像处理、计算机视觉、模式识别技术领域,特别涉及人脸识别方法。
背景技术
生物特征识别技术是身份识别的有效技术,近来发展最快的是人脸识别技术以及与人脸识别技术相融合的生物特征识别技术。因此,本发明涉及人脸图像采集和识别算法,具有重要的应用价值。
目前已有的人脸识别方法主要是对整个人脸进行识别的,而在诸多的识别方法中,主要采用主分量分析(PCA-Principal Component Analysis)、弹性匹配、神经网络、几何特征等方法。
同时,人脸识别的难点还在于:
(1)表情引起的人脸塑性变形
(2)姿态引起的人脸多样性
(3)年龄引起的人脸变化
(4)发型、胡须、眼镜、化装等因素引起的人脸模式的多重性
(5)光照的角度、强度以及传感器特性等因素引起的人脸图像的差异性
诸多的因素使得人脸识别成为一项棘手而富挑战性的课题,也因此在近年成为科研的热点。
基于人脸部件主分量分析的多模式人脸识别方法
对人脸进行部件提取,再对人脸部件进行主分量分析及多模式识别,以达到高的识别率。
1)首先采用模板匹配和投影直方图的方法对人脸图像定位,确定出人脸粗定位区、左右眼球、鼻尖、嘴、下颌顶点的基本位置,然后从整个人脸中提取出裸脸、眉毛+眼睛、眼睛、鼻尖、嘴五种人脸部件;
2)对从训练集人脸中提取出来的裸脸、眉毛+眼睛、眼睛、鼻尖、嘴五种人脸部件,利用主分量分析方法中的特征脸方法,分别形成特征裸脸、特征(眼睛+眉毛)、特征眼睛、特征鼻子、特征嘴巴;
3)对已知人的人脸图像提取出的裸脸、眉毛+眼睛、眼睛、鼻尖、嘴五种人脸部件,利用主分量分析方法中的投影特征值分析方法,提取已知人脸的裸脸、眼睛+眉毛、眼睛、鼻子、嘴五种人脸部件的投影特征值;
4)对待识别人的人脸图像提取出的裸脸、眉毛+眼睛、眼睛、鼻尖、嘴五种人脸部件,利用主分量分析方法中的特征投影值分析方法,提取待识别人脸的裸脸、眼睛+眉毛、眼睛、鼻子、嘴巴的投影特征值;
5)分别计算已知人脸部件图像的投影特征值和待识别人脸对应部件图像的投影特征值之间的相似度;对裸脸、眼睛+眉毛、眼睛、鼻子、嘴巴的相似度融合得到多模式的全局人脸识别方法,单个裸脸、眼睛+眉毛、眼睛、鼻子、嘴的相似度识别,或裸脸、眼睛+眉毛、眼睛、鼻子、嘴相互之间的组合识别就是多模式的局部人脸识别方法。
与本发明的相关技术说明如下:
Gabor方法:
Gabor小波是将Gabor基函数经过移位、旋转和比例变换以后得到的一组相似的Gabor函数,能够在保持空间关系的同时描述出图像中的频率结构,并能在空间域给出结果。在人脸识别的应用中,由于Gabor小波多分辨率、多方向地反映图像局部特性,所以对于光照的反应不敏感,和使用全局灰度特征进行识别相比较,对光照具有更好的适应性。
二维Gabor函数相当于一个被复正弦函数调制的二维高斯函数,在频域上则是二维高斯函数在两个频率轴上都发生了平移后的结果,是一个二维带通滤波器。由于每个Gabor滤波器相当于一个带通滤波器,为了提取人脸图像在多个方向多个尺度上的特征,通常会采用多个在不同尺度不同方向上的Gabor滤波器组成滤波器组。进行滤波时,将输入图像依次与滤波器组的各个滤波器卷积,并取其幅值作为输出,即输入图像的Gabor图像。
加权和规则:
对于不同的特征,识别性别都不尽相同,加权和规则就是对不同的特征采用不同的权值进行融合。每个特征的权值是由该特征本身的特性(可分性,识别率等)所决定的,不同的融合特征对应不同的融合权值。对识别性能好的特征赋予较大的权值,而识别性能差的特征赋予较小的权值。
发明内容
本发明的目的是为了提高人脸图像的采集质量和提高人脸识别算法的适应性,提出一种人脸部件特征和Gabor人脸特征融合的人脸识别方法及其装置,该装置提升了人脸图像采集的质量,该方法具有更高的人脸识别率。
本发明提出的人脸部件特征和Gabor人脸特征融合的人脸识别方法,其特征在于,由基于Gabor方法的特征裸脸的提取、基于Gabor方法的图像投影特征向量的提取,以及基于Gabor方法与基于人脸部件主分量分析的多模式人脸识别方法融合的人脸识别三部分组成;所述基于Gabor方法的特征裸脸的提取,包括以下步骤:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于清华大学,未经清华大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/200810104401.6/2.html,转载请声明来源钻瓜专利网。