[发明专利]基于全局信息的人工鱼群算法无效

专利信息
申请号: 200910019646.3 申请日: 2009-03-06
公开(公告)号: CN101515338A 公开(公告)日: 2009-08-26
发明(设计)人: 江铭炎;程永明;袁东风 申请(专利权)人: 山东大学
主分类号: G06N3/00 分类号: G06N3/00
代理公司: 济南金迪知识产权代理有限公司 代理人: 于冠军
地址: 250100山东*** 国省代码: 山东;37
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 全局 信息 人工 鱼群 算法
【说明书】:

技术领域

发明涉及一种人工鱼群算法,确切地说就是把全局最优信息加入到人工鱼位置的更新中去,并提出人工鱼的吞食行为和跳跃行为,属于人工鱼群算法技术领域。

背景技术

人工鱼群算法是一种新颖高效的群体智能算法,它模拟鱼群的行为进行随机的搜索,主要利用人工鱼的觅食、聚群、追尾和跳跃等行为,通过利用鱼群中各个个体的局部信息达到全局寻优的目的,基本的人工鱼群算法具有良好的克服局部极值、取得全局最优值的能力,算法简单易于程序实现,具有良好的收敛性能。但是基本的人工鱼群算法也存在算法精度低、后期收敛慢、复杂度较高等缺点。

基本人工鱼群算法的一些定义和基本行为描述:

人工鱼的个体状态可以表示为向量X=(x1,x2,...,xn),其中xi(i=1,...,n)为欲求寻优的变量;人工鱼所在的位置的食物浓度表示为Y=f(X),其中Y为目标函数值;人工鱼个体之间的距离表示为dij=||Xi-Xj||;Visual表示人工鱼的感知距离;δ为拥挤度因子。

1)觅食行为

设人工鱼的当前状态为Xi,在其感知的范围内随机的选择一个状态Xj,如果在求极大值问题中,Yi<Yj,则向该方向前进一步:

人工鱼的位置增量=0~1的随机数×人工鱼步长×(Xj状态的位置矢量-Xi状态的位置矢量)/距离;

反之,再重新随机选择状态Xj,判断是否满足前进条件;这样反复尝试try_number次后,如果仍不满足前进条件,则随机移动一步。

2)群聚行为

设人工鱼的当前状态为Xi,参考当前人工鱼视野范围内(即dij<Visual)的同伴数目nf及中心位置Xc,如果中心食物浓度与中心伙伴数的比值大于拥挤度因子和当前人工鱼食物浓度的乘积,表明伙伴中心有较多的食物并且不太拥挤,则向伙伴中心位置方向前进一步:

人工鱼的位置增量=0~1的随机数×人工鱼步长×(Xc状态的位置矢量-Xi状态的位置矢量)/距离;

否则执行觅食行为。

3)追尾行为

设人工鱼的当前状态为Xi,参考当前人工鱼的视野范围内有最大食物浓度Yj的伙伴Xj,如果Xi的食物浓度与附近伙伴数的比值大于拥挤度因子和当前人工鱼食物浓度的乘积,表明Xj有较高的食物浓度并且周围不太拥挤,则向Xj方向前进一步:

人工鱼的位置增量=0~1的随机数×人工鱼步长×(Xj状态的位置矢量-Xi状态的位置矢量)/距离;

否则执行觅食行为。

发明内容

为了提高人工鱼群算法的收敛速度和后期收敛精度,本发明提出一种基于全局信息的人工鱼群算法,将全局最优人工鱼的信息加入到人工鱼的位置更新公式中,提出了人工鱼的跳跃行为和吞食行为,以增加基本人工鱼群算法的全局寻优能力,降低基本人工鱼群算法的运算复杂度。

本发明的基于全局信息的人工鱼群算法的行为描述如下:

(1)觅食行为

设当前全局最优的人工鱼为Xbest,人工鱼的当前状态为Xi,在其感知的范围内随机的选择一个状态Xi,如果在求极大值问题中,Yi<Yj,则向Xj和最优人工鱼Xbest的矢量和方向前进一步:

人工鱼的位置增量=0~1的随机数×人工鱼步长×(Xj状态的位置矢量+最优人工鱼Xbest的位置矢量-Xi状态的位置矢量)/距离;

反之,再重新随机选择状态Xj,判断是否满足前进条件;这样反复尝试try_number次后,如果仍不满足前进条件,则随机移动一步;

(2)群聚行为

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于山东大学,未经山东大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/200910019646.3/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top