[发明专利]融合空间关系语义的高分辨率遥感图像检索方法无效

专利信息
申请号: 200910032456.5 申请日: 2009-07-08
公开(公告)号: CN101692224A 公开(公告)日: 2010-04-07
发明(设计)人: 汪闽;万其明 申请(专利权)人: 南京师范大学
主分类号: G06F17/30 分类号: G06F17/30
代理公司: 暂无信息 代理人: 暂无信息
地址: 210046 江*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 融合 空间 关系 语义 高分辨率 遥感 图像 检索 方法
【说明书】:

技术领域

发明涉及一种对高空间分辨率遥感图像(以下简称高分辨率遥感图像)进行查询检索的方法,具体说是一种融合空间关系语义和图像视觉特征的高分辨率遥感图像检索方法,属于遥感图像处理与信息提取领域。

技术背景

遥感图像检索(或者称为遥感图像查询)是从遥感图像数据库中查找用户感兴趣的图像或图像序列的过程。随着遥感图像数据量的急剧增加,如何对庞大的图像库进行有效管理,对图像信息进行快速准确地查询检索便成为急待解决的问题。总结目前研究进展,遥感图像检索主要有以下三种方法:

(1)基于文本的图像检索(Text-Based Image Retrieval,TBIR):该检索方式根据人对图像的理解添加一定的标注或描述性文本,检索的时候以这些人工注释的文本信息为索引对图像进行查询检索。此类方法主要存在如下几个方面的问题:1)人工注释工作量太大;2)人工注释具有主观性和不确定性。不同的观察者或者同一观察者在不同条件下对同一幅图像的描述可能会有不同,因而不够客观和准确;3)文本无法完全概括图像内容。

(2)基于内容的图像检索(Content-Based Image Retrieval,CBIR):该检索方式首先提取图像的视觉特征(主要包括颜色、纹理、形状等),然后根据这些视觉特征进行图像间相似性判断,从而实现检索过程。然而,目前CBIR由于往往仅仅利用了图像的较低层次的特征,即视觉特征进行检索,而人对图像内容的描述以及图像之间的相似性的判断则往往依据图像所蕴含的高层语义,如对象、场景以及对象行为特征等等,这种图像低层视觉特征与人们对图像的理解之间的差异(有人称其为“语义鸿沟”问题)使得CBIR的检索结果有时不那么尽如人意。

(3)基于语义的图像检索(Semantic-Based Image Retrieval,SBIR):所谓图像语义,是指图像内容的本质,是对图像表达内容的高度抽象。该类检索方法的主要思路是首先提取图像中所包含的高层语义信息,然后以这些语义信息为索引进行图像检索。根据图像中各语义要素的抽象程度,可将图像的语义信息分成6个层次(分别是特征语义、对象语义、空间关系语义、场景语义、行为语义、情感语义),称为图像层次化语义模型(图1)。

基于语义信息的图像检索被认为是当前最具发展前景的图像检索方式。但是,无论从生物视觉还是计算机视觉来说,人们对视觉理解的认识还远非深刻,计算机自动从图像中准确抽取语义描述就目前的技术手段来说还是一个非常困难的课题。因此此类方法目前是相关研究领域的热点和难点,有待进一步的研究和发展。

Jiang Li等人在《IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING》2004年4月第42卷第4期“Integrated Spectral and Spatial InformationMining in Remote Sensing Imagery”一文中提出了一种基于Gabor纹理特征和图像对象语义的遥感图像检索方法。其思路是用支持向量机(Support VectorMachine,SVM)方法对遥感图像进行分类,将图像分成水、草地、林地等8个类别。用户检索的时候,可以从图像库中选择一幅图像作为模板也可以直输入一幅图像作为模板。如果是用户从数据库中选择的图像,系统会根据该图像中地物的类型、面积和每种地物的Gabor纹理特征,从数据库中查找与其最接近的图像集合。如果是用户导入的图像,系统会在线提取该图像所包含的地物类型、面积,以及图像的Gabor纹理特征,然后和图像库中的图像进行相似性计算,寻找与其最接近的图像序列。该方法利用了图像视觉特征和对象语义信息,但是没有考虑对象间的空间关系语义,为此,检索精度仍有待提高。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京师范大学,未经南京师范大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/200910032456.5/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top