[发明专利]基于四叉树划分的区域生长压缩方法无效

专利信息
申请号: 200910053577.8 申请日: 2009-06-23
公开(公告)号: CN101594532A 公开(公告)日: 2009-12-02
发明(设计)人: 蒋伟 申请(专利权)人: 上海电力学院
主分类号: H04N7/26 分类号: H04N7/26;G06T9/00
代理公司: 上海申汇专利代理有限公司 代理人: 吴宝根
地址: 200090上*** 国省代码: 上海;31
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 四叉树 划分 区域 生长 压缩 方法
【说明书】:

技术领域

发明涉及一种区域生长压缩方法,特别涉及一种基于四叉树划分的区域生长压缩方法。

背景技术

随着多媒体技术和通讯技术的日益发展,加速了全球高速信息的建设,基于网络的多媒体数据传输正改变着人类的生活方式。多媒体娱乐、多媒体通信、数字音频广播和高清晰度电视等各类实际的应用对信息数据的存储和传输的要求不断提高。由于图像数据量非常大,直接存储和传输如此庞大的数据,不仅要消耗巨大的磁盘空间和网络带宽,而且还会极大地增加处理器地负担,所以应用图像压缩技术已成为迫切需要。,小波变换是20世纪80年代出现的数学分析工具,自1988年多分辨率分析思想引入小波变换以来,小波变换在图像压缩编码中得到广泛的应用,小波变换编码称为近年来提出的具有很好发展前景的图像编码方法。目前主流的压缩算法有:一、嵌入式零树编码(EZW)算法和以此为基础的改进算法,如CEZW和CZW算法。利用小波系数的零树特性设计编码算法,若某个精度级上一个小波系数是不重要的,则更高精度级上与之相对应的大量系数可以置零,在编码中不再考虑,从而提高编码效率。这类算法结构简单,实现方便,编码解码速度也较快,同时可以根据需要精确控制编码比特率。但随着显著阈值的降低,零树的预测效率随之降低。而且对于纹理非常丰富的图像,非显著区域非常琐碎,零树的预测性能也会大大降低。二、基于多级树集合分裂排序(SetPartitioning in Hierarchical Trees,SPIHT)的编码算法。该算法针对小波系数中存在的树根重要、除树根以外的其它结点不重要的这类树结构进行有效编码。它的主要成功之处在于设计了空间方向树结构,这种数据结构不仅充分利用了不同尺度间小波系数的相关性,也充分考虑了同一尺度下小波系数的相关性,可以更有效地组织小波系数。SPIHT编码算法不仅结构简单,无需任何训练,支持多码率,而且具有较高的信噪比和较好的复原质量,总体性能要更优于EZW算法,是迄今为止效果最好的小波压缩算法之一。但是该算法没有利用同一层中相邻区域的小波系数之间的相关性,同时最低频子带系数并非同时都是重要的,因此在低比特率下会导致恢复图像质量的下降。

发明内容

本发明针对小波算法零树的预测效率不高、没有充分利用同层小波系数间相关性的问题,提出了一种基于四叉树划分的区域生长压缩方法,该算法充分考虑了层间小波系数和同层小波系数之间的相关性,以及小波系数的聚类性,结构简单,具有优于SPIHT和EZW算法的压缩性能。

本发明的技术方案为:一种基于四叉树划分的区域生长压缩方法,将区域生长用于四叉树划分的小波压缩编码系统,区域生长模板定义小波系数的聚类特性,方法包括如下步骤:

1)、参数定义:定义LP是节点的小波系数值的序列,定义LIS是不重要系数集合的序列,cij表示节点(i,j)的小波系数值,D(i,j)表示结点(i,j)的所有后代节点,R(i,j)表示结点(i,j)的所有未被编码过的后代结点,O(i,j)表示(i,j)的所有儿子节点;

2)、初始化:将最低频子带中所有的系数点放入LP,最低频子带中所有有后代的结点放入LIS,输出门限值设为T=q2k,q是量化参数;

3)、分类:对LIS中的每个结点(i,j):

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于上海电力学院,未经上海电力学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/200910053577.8/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top