[发明专利]一种在复杂场景的视频中进行人体头肩检测的方法有效
申请号: | 200910077108.X | 申请日: | 2009-01-16 |
公开(公告)号: | CN101477626A | 公开(公告)日: | 2009-07-08 |
发明(设计)人: | 孙立峰;丁锡锋;徐辉;崔鹏;杨士强 | 申请(专利权)人: | 清华大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62 |
代理公司: | 北京清亦华知识产权代理事务所 | 代理人: | 廖元秋 |
地址: | 1000*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 复杂 场景 视频 进行 人体 检测 方法 | ||
技术领域
本发明属于计算机信息挖掘技术领域,特别涉及一种在复杂场景的图片中对人体的头肩检测的方法,尤其涉及在真实世界的监控视频的帧中行人的头肩检测。
背景技术
近年来,在计算机视频分析领域,在视频中对人体的检测是一个热门的研究方向。在人体检测的各种方法中,通过检测身体的各部分来检测人体是一个重要辅助手段。而对这些身体各部分,头肩区域是一个非常显著的特征。由于视频中的经常会出现人体被部分遮挡的情况,导致检测困难,而此时头肩还有很高的概率被检测出来,所以检测头肩对检测人体很好的辅助作用。同时,在视频事件检测领域,人在头肩附近的许多动作往往包含一些隐含的事件信息,比如挥手或者打电话等。所以,复杂背景下的头肩检测具有重要的意义。
头肩检测属于目标检测,而在目标检测领域,方法可以分为两类,一是做背景提取或分割,分离出的前景目标作为检测结果。二是在图像中直接搜索目标。在视频中用背景提取的方法只能应用于静态摄像机,对于场景中静止不动的目标,检测非常困难,这限制了它的应用范围。所以现在一般采用在图像中直接搜索目标的方法。这些方法一般使用分类器根据目标的特征对目标进行分类。目标的特征是目标本身包含的特征信息,比如目标图像区域的颜色直方图,纹理,梯度等。提取目标的特征之后,分类器根据目标的特征对目标的类别进行判断。目前国际通用的分类器主要是支持向量机(以下简称SVM),但是目前的单级SVM分类器往往由于只进行一次分类,准确率不高。
发明内容
本发明的目的是为克服已有技术的不足之处,提出一种在复杂场景的视频中进行人体头肩检测的方法,以梯度方向直方图作为描述目标的特征。采用两级的SVM作为分类器,可以提高准确率,同时提高检测速度。
本发明是将一定数量的头肩图片和背景图片作为正负样本集,训练SVM作为第一级分类器。用头肩图片和身体非头肩部分的图片作为正负样本,训练SVM作为第二级分类器。这样就构成了一个两级的级联分类器。检测区域依次经过这两级SVM检测,以此检测结果作为最终结果。
本发明中使用的SVM是目前在国际比较流行的LibSVM分类器,不对它进行修改。
本发明提出的在复杂场景的视频中进行人体头肩检测的方法,主要包括以下步骤:
(1)从待检测的一类视频中选择一个视频。从该视频的各帧中人工标定一定数量(至少1000张)的头肩图片、一定数量(至少1000张)背景图片和一定数量(至少1000张)的身体其他部分的图片,其中要求这些图片的边长至少1厘米。以头肩图片作为正样本图片,以背景图片作为负样本图片;;
(2)将得到的正负样本图片进行左右镜像,增加样本的数量;
(3)提取得到的正负样本图片的梯度方向直方图,并将梯度方向直方图转化为向量的形式,作为样本图片的梯度向量;
(4)用从正负样本中提取出的梯度向量对第一级支持向量机(SVM)进行训练,生成一个用于分类的第一级模型;
(5)用所述头肩图片作为新正样本,用所述身体其他部分的图片代替所述背景图片作为新负样本;
(6)提取所述新正负样本图片的梯度方向直方图,并将梯度方向直方图转化为1乘N的向量的形式,N为正整数,作为新样本的梯度向量;
(7)用从新的正负样本中提取出的梯度向量对第二级支持向量机(SVM)进行训练,生成一个用于分类的第二级模型;
(8)读入一个待检测视频,提取该视频的一帧图像;
(9)确定该帧图像上某一个待检测窗口的位置和大小,采用步骤(3)的方法提取该窗口的梯度方向直方图,并得到该窗口的梯度向量;
(10)将该梯度向量通过第一级分类器进行分类检测,如果分类结果为负(即此窗口不包含头肩头像),则结束该窗口的检测,转步骤(11);如果第一级分类结果为正(即第一级分类器判定此窗口包含头肩头像),则将该梯度向量通过第二级分类器进行分类检测;如果第二级分类结果为负,转步骤(11),如果分类结果为正,则确认该窗口包含头肩,将窗口的坐标保存下来,作为该窗口的检测结果;
(11)改变窗口的位置和大小,采用步骤(3)的方法提取该窗口的梯度方向直方图,并得到该窗口的梯度向量,转步骤(10)进行该窗口的分类检测,最终得到各窗口的检测结果。
上述方法的步骤(3)具体包括如下步骤:
(31)将每一个样本图片作为一个窗口,将窗口分为MxN的块,块之间有30%-50%的重叠,M、N均为正整数;
(32)该每个块平分成多个单元;
(33)对该每个单元内的像素计算梯度方向和大小;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于清华大学,未经清华大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/200910077108.X/2.html,转载请声明来源钻瓜专利网。
- 上一篇:一种支持企业工作流运行的计算机装置
- 下一篇:一种光学跟踪方法、装置及其系统