[发明专利]采用神经网络和耦合迭代对16Mn钢承力件进行拉伸损伤状态的识别系统无效
申请号: | 200910083342.3 | 申请日: | 2009-05-04 |
公开(公告)号: | CN101566601A | 公开(公告)日: | 2009-10-28 |
发明(设计)人: | 骆红云;王宏伟;张峥;韩志远;钟群鹏 | 申请(专利权)人: | 北京航空航天大学 |
主分类号: | G01N29/14 | 分类号: | G01N29/14;G01N3/08;G06N3/02;G06N3/08 |
代理公司: | 北京永创新实专利事务所 | 代理人: | 周长琪 |
地址: | 100083*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 采用 神经网络 耦合 16 mn 钢承力件 进行 拉伸 损伤 状态 识别 系统 | ||
技术领域
本发明涉及一种对在役16Mn钢承力件服役期间的失效状态进行识别的方法。更特别地说,是指一种对声发射换能器采集的数据首先进行神经网络的训练得到一个损伤度标志模型,然后应用该模型对在役16Mn钢承力件实时采集的声发射数据进行耦合迭代处理,从而识别出在役16Mn钢承力件属于何种拉伸损伤状态。
背景技术
港口大型机械设备中的岸边设备:如装船机、卸船机、抓斗机,常应用16锰钢作为关键承力件。岸边设备在使用一段时间后,作为主要承力件的16锰钢的损伤状态对整个岸边设备的使用寿命将造成重要影响。
16Mn钢(16锰钢)是结合我国资源情况发展起来的一种低合金钢,已被广泛使用。16Mn钢结构在服役一定的时间后,时常会发生一些失效事故,而损伤是造成其失效的主要原因,为此要对其损伤状态作出有效的识别,及时、正确地评价16Mn钢承力件的损伤程度,为其安全运行及寿命预测提供依据。
声发射技术(Acoustic Emission Technique)因具有动态、实时检测等优点,已广泛的应用于结构和构件的损伤检测。实践表明,材料在受力(形变)过程的不同阶段,其声发射特征会发生一系列不同的变化,也就是说16Mn钢承力件不同的损伤阶段,将有不同的声发射信号,而损伤状态的转变,往往引起声发射多个参数的变化,同时某一参数变化又可以是由多种损伤状态引起的,所以有必要采用多声发射换能器的信息融合技术,即充分利用不同时间与空间的多声发射换能器数据资源,采用计算机技术对按时间序列获得的多声发射换能器观测数据,在一定准则下进行分析、综合、支配和使用,获得对被测对象的一致性解释与描述,进而实现相应的决策和估计,使系统获得比它的各组成部分更充分的信息。因此本发明将信息融合技术引入16Mn钢承力件损伤状态识别系统中,建立信息融合和人工神经网络相结合的诊断系统对16Mn钢承力件损伤状态进行识别、诊断。
神经网络是一种模拟人思维的一个非线性系统。BP神经网络学习算法可以描述为:首先标准化训练样本,初始化权值、阈值,然后输入训练样本,对每个样本计算其输出状态,得到其误差,并根据误差反向传播调整网络各层的权值与阈值,如此反复调整直到网络误差满足设置的条件为止。样本训练完成之后,输入检验样本,若此时网络误差小于检验误差,则该网络可以用于实际预测。
随着现代工业日益向大规模、高效率发展,作为港口重要物流装备的大型岸边起重机械,具有以下几个特点:
(1)设备老,有很多大型起重机是60年代至70年代我国自行设计制造或从东欧进口,还有少数是从美、日等国进口的二手设备,按设计寿命20~25年考虑,很多设备也已进入服役后期或超期服役阶段;
(2)任务重,随着生产规模的扩大,以及起重机更新的滞后,许多起重机的工作日趋繁重,超载的情况也时有发生;
(3)目前的损伤检测方法不成熟,超声波检测和磁粉检测等方法对起重机进行的部分抽样检测,盲目性大、易出现漏检且检测的周期长,工作量大,费用昂贵;
(4)预警评估系统不完善,目前应用的分析判别技术还不能对起重机承力件的损伤做出准确的预警和安全评估。
因此,为确保起重机安全可靠的运行,须对承力件进行检测、判断承力件的损伤状态,从而进行安全评估。
发明内容
为了减少岸边设备在使用过程中突发断裂造成的人员伤害、设备损失和经济损失,本发明提出一种采用神经网络和耦合迭代的组合方法来识别在役16Mn钢承力件的不同拉伸损伤状态。该状态识别首先采用神经网络方法对多路声发射换能器采集得到的信息进行神经网络训练,获得用于判断16Mn钢承力件不同拉伸损伤状态的损伤度标志模型;然后用该模型的神经网络输出结果构造耦合迭代模型,获得数据融合模块,进而将数据融合模块内嵌在16Mn钢承力件识别系统中。内嵌有本发明的数据融合模块在工作状态下,能够对在役16Mn钢承力件不同损伤状态进行识别,并对识别出的结果作出预警。
本发明的一种采用神经网络和耦合迭代对16Mn钢承力件进行拉伸损伤状态的识别系统,该系统包括有多个声发射换能器(4)、多路前置放大器(3)、一个声发射仪(2),其特征在于:还包括有一个16Mn钢承力件无损检测单元(1);
16Mn钢承力件无损检测单元(1)包括有过滤模块(11)和数据融合模块(12),其中,过滤模块(11)有数据滤波处理模块(11A)和波形滤波处理模块(11B),数据融合模块(12)有损伤度标志模型(12A)和耦合迭代模型(12B);
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京航空航天大学,未经北京航空航天大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/200910083342.3/2.html,转载请声明来源钻瓜专利网。