[发明专利]基于压缩域的视频超分辨率方法有效
申请号: | 200910153544.0 | 申请日: | 2009-10-19 |
公开(公告)号: | CN101674478A | 公开(公告)日: | 2010-03-17 |
发明(设计)人: | 张小红;童若峰 | 申请(专利权)人: | 浙江大学 |
主分类号: | H04N7/26 | 分类号: | H04N7/26;H04N7/50 |
代理公司: | 浙江杭州金通专利事务所有限公司 | 代理人: | 沈孝敬 |
地址: | 310027浙*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 压缩 视频 分辨率 方法 | ||
1.一种适用于压缩域的视频超分辨率方法,其特征在于包括如下具体步骤:
1)对输入的压缩视频进行解压缩,得到低分辨率的视频图像、量化矩阵、量化 后的变换域系数、运动补偿后的预测视频图像、以及运动矢量信息;
2)对从自然场景到压缩视频的过程进行建模,建立低分辨率图像和相应高分辨 率图像之间的关系:高分辨率图像通过模糊、下采样、压缩和解压缩得到低 分辨率图像;建立运动补偿后的预测视频图像与对应高分辨率图像间的关 系;
3)由上面建立的低分辨率图像和相应高分辨率图像之间的关系可以建模条件 概率:在高分辨率图像已知的情况下,得到低分辨率图像的概率使用量化噪 声的分布来建模,所述量化噪声的分布符合高斯分布;
4)对上面量化噪声的协方差矩阵进行建模:先求解变换域的协方差矩阵:由量 化矩阵可以得到,再将变换域的协方差矩阵转换成空间域的协方差矩阵;
5)对在高分辨率图像已知的情况下,得到预测视频图像的概率使用运动估计引 入量化噪声的分布来建模,所述运动估计引入噪声的分布符合高斯分布;
6)对上面运动估计引入量化噪声的协方差矩阵进行建模,先求解变换域的协方 差矩阵:由量化矩阵和变换域系数可以得到,再将变换域的协方差矩阵转换 成空间域的协方差矩阵;
7)建模高分辨率图像的先验概率:对图像的梯度分布用广义拉普拉斯分布来拟 合,使超分辨率图像的梯度分布尽可能接近解压缩后的低分辨率图像的梯度 分布,而且超分辨率图像应该是平滑的,没有“块效应”;
8)使用贝叶斯模型MAP框架估计暂时的单幅超分辨率图像;
9)使用梯度下降来求解得到暂时的单幅超分辨率图像,超分辨率图像的初始值 为双线性插值放大后的图像;
10)使用鲁棒性强的光流法来估计各单幅超分辨率图像和待处理单幅超分辨率 图像之间的运动位移,作为各高分辨率图像和目标高分辨率图像之间的位移 初始值;
11)建立当前窗口内的各低分辨率图像与目标高分辨率帧之间的关系:目标高分 辨率图像通过运动位移/模糊/下采样/压缩/解压缩来得到当前窗口内的各 低分辨率图像;
12)由当前窗口内的多帧暂时的单幅超分辨率图像,结合7)中的先验概率,使 用IRLS(迭代重加权最小二乘法)来构建目标函数,从而削弱离群点和噪声 的影响;
13)使用循环坐标下降来得到最终的超分辨率图像:先假设超分辨率图像已知, 使用梯度下降法分别更新各运动位移;然后在求得的位移基础上,用梯度下 降法重新求超分辨率图像,如此循环迭代,直至收敛;
本方法只超分辨率亮度分量,色度和色差分量只是双线性插值所得。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江大学,未经浙江大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/200910153544.0/1.html,转载请声明来源钻瓜专利网。