[发明专利]基于SET2FNN的GPS/MEMS-INS组合导航系统定位误差预测方法有效

专利信息
申请号: 201010182083.2 申请日: 2010-05-19
公开(公告)号: CN101871782A 公开(公告)日: 2010-10-27
发明(设计)人: 丛丽;秦红磊;邢菊红 申请(专利权)人: 北京航空航天大学
主分类号: G01C21/20 分类号: G01C21/20
代理公司: 北京科迪生专利代理有限责任公司 11251 代理人: 成金玉;李新华
地址: 100191*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 set2fnn gps mems ins 组合 导航系统 定位 误差 预测 方法
【说明书】:

技术领域

发明涉及GPS/MEMS-INS(Micro Electro Mechanical System-Inertial NavigationSystem,基于微机电系统的惯性导航系统,简称微型惯性导航系统)组合导航系统定位误差预测领域,具体涉及一种基于SET2FNN(Self-Evolving Interval Type-2 Fuzzy NeuralNetwork,自进化区间类型-2模糊神经网络)的GPS/MEMS-INS组合导航系统在GPS信号丢失时定位误差的预测方法。

背景技术

近年来,随着MEMS技术的发展,MEMS惯性传感器开始在导航定位领域获得越来越广泛的应用。其所具有的体积小、重量轻、成本低的特点符合了大多数商业应用领域对导航系统的基本要求。由于MEMS-INS与GPS所具有的互补特性,GPS/MEMS-INS组合导航系统现已逐渐成为导航系统一个主要的发展方向之一。

GPS/MEMS-INS组合导航系统最常用的组合滤波算法是卡尔曼滤波器。卡尔曼滤波方法对于具有高斯分布噪声的线性系统,可以得到系统状态的递推最小均方差估计。GPS/MEMS-INS组合导航系统的状态方程是非线性的,故需采用扩展卡尔曼滤波(Extended Kalman Filtering,EKF)。但EKF只是对非线性的系统方程进行简单的线性化,并未完全解决系统的非线性滤波问题,且非线性方程线性化会带来一定的误差,甚至造成滤波器的不稳定。UKF(Unscented Kalman Filter,无迹卡尔曼滤波)是一种基于采样点的非线性滤波算法,它直接使用非线性系统模型,不需要进行线性化近似。因此对于组合导航系统等非线性系统,UKF更为合适。

当GPS信号完好时,UKF可以有效地进行导航信息融合滤波,获得精确的导航状态量的估计。但当GPS信号丢失时,组合导航系统的精度主要取决于MEMS-INS,而由于MEMS惯性传感器存在严重的非线性漂移误差,导致MEMS-INS单独导航时定位误差随时间快速积累,因此当GPS信号丢失时,GPS/MEMS-INS组合导航系统定位精度会快速下降,造成很大的定位误差。

MEMS惯性传感器的非线性漂移误差要实现对其精确建模是很困难的。在传统的组合滤波器中,一般将其建模为一定的随机过程,例如一阶马尔可夫过程或者自回归模型。然而,这些模型只能对惯性传感器的漂移进行近似的描述,特别是对于MEMS惯性传感器,由于其漂移随时间变化较迅速,模型的有效时间很短。

为解决GPS信号丢失时,GPS/MEMS-INS组合导航系统定位精度下降问题,人工智能的方法被引入GPS/MEMS-INS组合算法中。人工智能方法包括神经网络、模糊逻辑等,其可以较好地对非线性系统进行建模及预测,因此可以被用于组合导航系统非线性误差的建模及预测中,从而提高GPS信号丢失时导航系统的定位精度。

多层前馈型神经网络是一种常用的神经网络,已被成功应用于GPS/MEMS-INS组合导航系统中进行误差的非线性预测,一般包括以惯导输出的位置作为神经网络输入、预测组合导航系统的精确位置的PUA模式(位置更新模式),以及以惯导输出的位置作为神经网络输入,预测组合导航系统输出的位置误差的P-δP(位置-位置误差)模式等。但多层前馈型神经网络用于GPS信号丢失时非线性误差预测中存在训练时间较长,计算量大、实时性难于保证等问题,且其采用固定结构,动态自适应能力较差。

基于径向基函数的神经网络RBFNN只有一个隐层,输出单元是线性求和单元,结构简单固定,不需要做太多变化,训练时间短,因此将其引入组合导航系统误差预测中,可以获得较好的实时性,但其预测效果不如多层前馈型神经网络好。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京航空航天大学,未经北京航空航天大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201010182083.2/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top