[发明专利]基于多智能体遗传聚类算法的图像分割方法有效

专利信息
申请号: 201010530968.7 申请日: 2010-11-04
公开(公告)号: CN101980298A 公开(公告)日: 2011-02-23
发明(设计)人: 焦李成;刘静;耿久雷;王爽;李阳阳;刘若辰;马文萍 申请(专利权)人: 西安电子科技大学
主分类号: G06T7/00 分类号: G06T7/00
代理公司: 陕西电子工业专利中心 61205 代理人: 王品华;朱红星
地址: 710071*** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 智能 遗传 算法 图像 分割 方法
【说明书】:

技术领域

发明属于图像处理技术领域,涉及图像分割方法,可用于模式识别和计算机视觉等领域。

背景技术

图像分割是后续图像分析和图像理解的基础,在实际中有着非常广泛的应用,例如对图像目标的提取、测量都离不开图像分割,分割的准确性直接影响后续任务的有效性,因此具有十分重要的意义。

图像分割又是一种特殊的图像处理技术,其实质是一个按照像素属性即灰度、纹理、颜色进行分类的过程。

聚类是无监督分类的一种,被广泛地应用于工程、生物、计算机视觉和遥感等领域。聚类是将一组分布未知的数据进行分类,尽可能地使得同一类中的数据具有相同的性质,而不同类的数据其性质各异,其目的是寻找隐藏在数据中的结构。

基于此,许多聚类算法被应用于图像分割领域并取得了较为满意的效果。但由于图像数据的特殊性,并不是所有的聚类算法都能直接应用于图像分割,有的算法需要改进,有的算法根本不适合这个领域。几种常用的聚类技术包括:分层聚类算法,最近邻域聚类算法,模糊聚类算法,人工神经网络聚类算法,遗传聚类算法。其中,经常被用于图像分割的典型的聚类算法是模糊C均值FCM算法。但这种FCM算法的缺点是:对初始值敏感及对噪声数据敏感,容易陷入局部最优。为解决这类问题,许多研究人员提出采用遗传算法与FCM结合,得到了比较满意的结果,例如国内的高新波教授在其著作《模糊聚类分析及其应用》(西安电子科技大学出版社,2004年出版)中曾对此做过大量的研究,但由于传统遗传算法全局进化机理的局限,使得这种遗传算法与FCM结合后的方法GA-FCM仍然具有收敛速度慢和容易陷入局部极值等缺陷,导致图像分割质量的下降和分割效果稳定性的降低。另外,前面所述的FCM以及遗传算法与FCM结合后的方法在分割图像时利用的是图像灰度直方图特征,二者均没有充分的考虑图像像素的空间信息,因此图像分割质量容易受到图像中噪声的影响,不利于后续的图像分析和理解。

发明内容

本发明的目的在于克服上述已有技术的不足,提出一种基于多智能体遗传聚类算法的图像分割方法,以充分考虑图像像素的空间信息,抑制噪声对图像分割的影响,改善了图像分割效果。

为实现上述目的,本发明包括以下步骤:

(1)输入待分割图像,

(2)提取待分割图像的二维灰度信息:

(2a)对待处理的当前像素点(σ1,σ2),选取该点3×3邻域内各点值的中值代替(σ1,σ2),将此均值作为二维灰度信息的第一维;

(2b)对待处理的当前像素点(σ1,σ2),选取该点(5×5)邻域内各点的均值代替(σ1,σ2),将此均值作为二维灰度信息的第二维;

(3)应用多智能体遗传聚类算法对图像二维灰度信息进行聚类:

(3a)确定聚类数目c和模糊权重m,随机初始化聚类原型,每个聚类原型代表一个智能体,确定种群大小,令进化代数t=0;

(3b)利用如下隶属度公式对隶属度进行更新:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201010530968.7/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top