[发明专利]一种(Ti,Zr)2AlC/Al2O3固溶体复合材料及其制备方法有效
申请号: | 201010623899.4 | 申请日: | 2010-12-31 |
公开(公告)号: | CN102174680A | 公开(公告)日: | 2011-09-07 |
发明(设计)人: | 朱建锋;韩娜;杨海波;王芬;王莉丽;叶兰;杨文文 | 申请(专利权)人: | 陕西科技大学 |
主分类号: | C22C32/00 | 分类号: | C22C32/00;C22C14/00;C22C1/05 |
代理公司: | 西安智大知识产权代理事务所 61215 | 代理人: | 弋才富 |
地址: | 710021 陕西省*** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 ti zr sub alc al 固溶体 复合材料 及其 制备 方法 | ||
技术领域
本发明属复合材料制造领域,特别涉及一种(Ti,Zr)2AlC/Al2O3.固溶体复合材料及其制备方法。
背景技术
新型层状陶瓷材料Ti2AlC以其优异性能吸引了国内外众多学者的探索与研究。它既具有金属的性能,如在常温下具有很好的导电导热性、较低的维氏硬度、较高的弹性模量和剪切模量、室温下可进行传统的机械加工,在较高温度下具有塑性;该材料又具有陶瓷的性能,如高熔点、高热稳定性和良好的抗氧化性能。但该材料也存在烧结温度高,温度范围小,以及硬度低、强度比较小等缺点而限制了其进一步应用。
近年来,为改善Ti2AlC材料的性能,人们利用固溶强韧化和复合化的手段对其进行了改性研究,取得了较好的效果。如文献报道(Scripta Materialia 53(2005)1369-1372)利用单质V元素进行固溶改性研究,使其力学性能得到了很大的提高,同样方法可以利用Zr元素进行固熔改性研究,但该方法原料成本较高,同时合成温度较高,不利于其产业化生产;也有文献(Scripta Materialia 50(2004)897-901)报道利用Al2O3颗粒能对与Ti2AlC具有相似结构的Ti3AlC2材料性能进行改性。但目前所采用的方法都比较单一,同时,在制备方法上主要以Al2O3和Ti2AlC两种粉体混合进行烧结,或者以Al、C、TiO2为原料高温通过还原反应生成Ti2AlC/Al2O3复合材料,但不管那种工艺,都存在反应温度高,而强度不足,无法大规模产业化生产。专利(200910219290.8)报道了利用高能球磨合成Ti2AlC/Al2O3复合材料的新方法,该方法所合成的材料在性能上有了很大的提高,但高能球磨难以工业化生产,同时,并没有对基体相进行固溶改性。因此,如何采取有效的途径,利用低廉的材料合成Al2O3颗粒强韧化的固溶型Ti2AlC复合材料是今后的研究重点。
发明内容
为了克服上述现有技术的缺陷,本发明的目的在于提供一种(Ti,Zr)2AlC/Al2O3固溶体复合材料及其制备方法,利用Ti-Al-C-ZrO2体系为原料,通过铝热反应原位反应工艺低温制备Al2O3强化的Ti2AlC固溶体复合材料;该方法利用廉价氧化物ZrO2替代了昂贵的金属单质,降低了原料成本;利用铝热还原反应自身的反应热,降低了材料的合成温度,同时原位生成的Al2O3增强相颗粒细小、均匀,使材料的性能得到了很大的提高;所制备的材料具有高强、致密、耐高温、可加工的性能特点。
为了达到上述目的,本发明的技术方案是这样实现的:
一种(Ti,Zr)2AlC/Al2O3固溶体复合材料,其初始原料为纯度大于等于99%,细度小于等于200目的金属Ti粉、Al粉、C粉以及金属氧化物ZrO2按以下反应式进行配比:
2(1-x)Ti+(1+8x/3)Al+C+2xZrO2→(Ti1-xZrx)2AlC+4x/3Al2O3 (1)(x=0.005~0.2241),结果为Ti:39.38~70.08wt%,Al:20.11~22.85wt%,C:6.37~8.84wt%,ZrO2:0.97~31.41wt%。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于陕西科技大学,未经陕西科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201010623899.4/2.html,转载请声明来源钻瓜专利网。
- 一种Nd<sub>2</sub>O<sub>3</sub>-Yb<sub>2</sub>O<sub>3</sub>改性的La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>-(Zr<sub>0.92</sub>Y<sub>0.08</sub>)O<sub>1.96</sub>复相热障涂层材料
- 无铅[(Na<sub>0.57</sub>K<sub>0.43</sub>)<sub>0.94</sub>Li<sub>0.06</sub>][(Nb<sub>0.94</sub>Sb<sub>0.06</sub>)<sub>0.95</sub>Ta<sub>0.05</sub>]O<sub>3</sub>纳米管及其制备方法
- 磁性材料HN(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub>·[Co<sub>4</sub>Na<sub>3</sub>(heb)<sub>6</sub>(N<sub>3</sub>)<sub>6</sub>]及合成方法
- 磁性材料[Co<sub>2</sub>Na<sub>2</sub>(hmb)<sub>4</sub>(N<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>]·(CH<sub>3</sub>CN)<sub>2</sub> 及合成方法
- 一种Bi<sub>0.90</sub>Er<sub>0.10</sub>Fe<sub>0.96</sub>Co<sub>0.02</sub>Mn<sub>0.02</sub>O<sub>3</sub>/Mn<sub>1-x</sub>Co<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> 复合膜及其制备方法
- Bi<sub>2</sub>O<sub>3</sub>-TeO<sub>2</sub>-SiO<sub>2</sub>-WO<sub>3</sub>系玻璃
- 荧光材料[Cu<sub>2</sub>Na<sub>2</sub>(mtyp)<sub>2</sub>(CH<sub>3</sub>COO)<sub>2</sub>(H<sub>2</sub>O)<sub>3</sub>]<sub>n</sub>及合成方法
- 一种(Y<sub>1</sub>-<sub>x</sub>Ln<sub>x</sub>)<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub>薄膜的直接制备方法
- 荧光材料(CH<sub>2</sub>NH<sub>3</sub>)<sub>2</sub>ZnI<sub>4</sub>
- Li<sub>1.2</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>Mn<sub>0.54</sub>O<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>复合材料的制备方法