[发明专利]基于FPGA的粮食品质在线检测装置及方法有效
申请号: | 201110113881.4 | 申请日: | 2011-05-04 |
公开(公告)号: | CN102253052A | 公开(公告)日: | 2011-11-23 |
发明(设计)人: | 饶秀勤;王靖宇;应义斌 | 申请(专利权)人: | 浙江大学 |
主分类号: | G01N21/89 | 分类号: | G01N21/89 |
代理公司: | 杭州求是专利事务所有限公司 33200 | 代理人: | 林怀禹 |
地址: | 310027 浙*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 fpga 粮食 品质 在线 检测 装置 方法 | ||
技术领域
本发明涉及一种粮食品质在线检测装置及方法,尤其是涉及一种基于FPGA的粮食品质在线检测装置及方法。
背景技术
我国是世界第一产粮大国,每年生产5亿多吨粮食,占世界总产量的22%。但是与我国粮食生产大国地位极不相称的是我国粮食检测加工自动化水平的相对落后。国内粮食检测的一般方法,还停留在完全手工阶段,即便有部分粮食品质参数可以通过简单的仪器设备进行检测,其结果的准确性还远不能令人满意。大多数粮食检测加工装备制造企业规模小、技术分散、开发能力弱、产品单一、成套能力差,效率低。当前国内市场上,用于粮食颗粒品质检测和分级的光电色选机,国外品牌的占据着主要份额。
目前对粮食品质进行分级的主要指标包括容量﹑不完善粒、杂质、水分、色泽和气味,而不完善粒和杂质含量是可以通过图像的方法进行检测的。以往的检测分级工作主要是由人工完成,检测结果容易受主观因素的影响,精度低、速度慢,且对检测员而言,容易造成视觉疲劳。传统基于PC机的机器视觉技术,可以实现对粮食品质客观、准确的检测,但却存在系统体积庞大、成本高和实时性差的问题。嵌入式机器视觉技术作为一种新兴发展起来的无损检测技术,极大的克服了人工检测和传统机器视觉技术的不足,具有实时性好、成本低、功耗小和结构紧凑的特点,已经被广泛地应用于各种检测和监控行业当中。
在粮食品质自动检测方面,已完成的工作主要有:
Y N Wan等(Y N Wan,C M Lin,J F Chiou.Rice Quality Classification Using an Automatic Grain Quality Inspection System. Transactions of the ASAE,2002,45(2):379-387)研制了谷物自动检测系统,粮粒通过送料机构中的矩阵格子撒到透明皮带上,而后进入视场;系统包含一个彩色相机和一个黑白相机,彩色相机采用入射光照明方式,用来检测非破损粒的颜色特征,黑白相机采用背光照明方式,用来检测破损粒;气动阀可以将谷物吹入集料箱内;系统对正常粒、白垩粒和破损粒的检测精度分别为95%、92% 和87%,检测速度为每分钟1200粒。
Kawamura等(Kawamura S,Natsuga M,Takekura K,Itoh K. Development of anautomatic rice-quality inspection system. Computers and Electronics in Agriculture, 2003,40:115-126)研制了稻米品质自动检测系统,该系统分为两部分,一部分利用近红外透射仪判断稻米的水分和蛋白质含量,另一部分利用透射传感器和反射传感器判断稻米的内外部特征,该系统每40秒处理1000粒,并达到了较高的检测精度。
成芳(成芳.稻种质量的机器视觉无损检测研究[D].杭州:浙江大学,2005.)开发了基于Matlab平台的稻种图像分析系统;提出了基于K-W单特征分析的最优特征集选取方法;对于稻种常见缺陷如芽谷、霉变和裂颖,开发了高精度的识别算法。
凌云等(凌云, 王一鸣, 孙明, 孙红, 张小超. 基于机器视觉的大米外观品质检测装置. 农业机械学报,2005,36(6):89-92)研制了一套基于机器视觉的大米外观品质参数检测装置,该装置由嵌入式工控机作为处理平台,利用CCD相机拍摄托盘上的静态图像;系统采用改进的流域分割算法实现了相连籽粒的分割,并实现了在静态的情况下对100粒米样本的白垩度、白垩率、黄米粒和粒型的检测,检测精度分别为±2%、±1%、±5%和±4%。
苏忆楠(苏忆楠. 基于机器视觉和高光谱图像技术的粮食水分检测及杂质与不完善粒识别方法研究[D].杭州:浙江大学,2011.) 采集6400幅粮粒图像,提取了图像的形状、颜色、不变矩等29个特征,通过以单特征识别为主,三层BP人工神经网络为辅的方法,构建了粮粒与杂质识别的机器视觉静态检测硬件系统和识别模型。结果显示该识别模型的总体识别正确率在90%以上。
在实际在线检测中,这些方法只能检测到粮粒整个表面的一半,不能完成对整个表面颜色特征的检测;且图像处理都是依赖于PC机或是基于串行指令体系处理器的嵌入式系统,这使得系统若想实现在线检测,就必须使数据运算的时钟频率是数据采集时钟频率的数倍,系统的处理速度受到极大限制。
发明内容
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江大学,未经浙江大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201110113881.4/2.html,转载请声明来源钻瓜专利网。
- 上一篇:一种存储装置
- 下一篇:不同分辨率的用户界面的自转换方法及自转换系统