[发明专利]一种多孔介质燃烧器在线燃烧优化的模型更新方法无效
申请号: | 201110115545.3 | 申请日: | 2011-05-05 |
公开(公告)号: | CN102252342A | 公开(公告)日: | 2011-11-23 |
发明(设计)人: | 吴鹏锋;王春林;俞天明;孔亚广;杨成忠 | 申请(专利权)人: | 衢州远景资源再生科技有限公司 |
主分类号: | F23N1/02 | 分类号: | F23N1/02 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 324000 浙*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 多孔 介质 燃烧 在线 优化 模型 更新 方法 | ||
技术领域
本发明属于信息控制技术领域,涉及到增量学习技术,特别是涉及一种多孔介质燃烧器在线燃烧优化的模型更新方法。
背景技术
多孔介质燃烧器燃烧优化的方法是节能减排的重要技术手段,其目标是在一定的负荷条件下,通过调整多孔介质燃烧器配风、给燃气等运行参数而获得高效率、低污染排放的运行状态。多孔介质燃烧器的配风、给燃气等运行参数的搭配对多孔介质燃烧器燃烧状态有直接的影响,不同的配风、给燃气及氧量等操作参数的配置会直接导致不同的燃烧效率及污染气体的排放量的情况。对于给定的多孔介质燃烧器,在一定的负荷条件下,针对不同的燃烧状态特征指标,存在一种最优的操作参数配置方案,能够使相应燃烧状态的特征指标最优化,但是,多孔介质燃烧器的操作参数间有着复杂的耦合关系,要找到最优的操作参数的配置并不容易。随着科学技术的不断进步,多孔介质燃烧自动化程度也在不断提高,但是多孔介质燃烧器燃烧优化问题还没有很好的得到解决。
目前多孔介质燃烧器的燃烧优化的研究热点是通过数据挖掘,在大量不同的实际运行参数组合中,应用机器学习的方法,挖掘出运行参数与多孔介质燃烧器燃烧状态的特征指标间的关系模型,再利用优化算法结合挖掘出的模型进行多孔介质燃烧器的在线燃烧优化。这种方法节省人力物力,而且可以找到比人工实验更优的参数配置,但是由于多孔介质燃烧器的设备的特性随着时间的增长会有所改变,如何保证模型能够快速、高效的更新以适应新的情况成为了这种方法的瓶颈问题。该问题与建模方法、样本数据选取及更新策略等都有很大关系。
发明内容
本发明的目的是针对多孔介质燃烧器的燃烧优化中的瓶颈问题,提出一种兼顾模型历史学习结果与新的变化情况的模型更新方法。
本发明具体是利用超出原有模型预测误差限度的数据与原模型中部分数据相结合再建新模型的方法,实现模型更新。该方法克服了传统更新方法中将已有模型数据完全放弃,不能利用已有模型的数据的缺点,充分利用了原模型数据与新数据相结合的特点,缩短了模型更新的数据处理计算工作量和时间,使更新后的模型兼顾了新燃烧特点和原来的燃烧特点,模型预测能力更全面。
本发明的技术方案是通过利用原有模型预测超出误差限度的数据与原模型中的部分数据共同作为样本,建立新的模型,确立了一种多孔介质燃烧器燃烧优化的模型更新方法,利用该方法可以快速、高效的实现模型的更新,使更新后的模型兼顾了新燃烧特点和原来的燃烧特点,模型预测能力更全面。
本发明方法的步骤包括:
步骤(1)建立原有模型的预测错误数据库。根据具体多孔介质燃烧器燃烧情况和对模型预测精度的要求,设定模型的允许预测误差限δ,在采集数据时,判断模型预测值与实际运行值之间的误差与允许预测误差限δ的大小,如果预测误差大于δ,即|Vc-Vs|>δ,其中Vc为模型预测值,Vs为实际运行数据,则将超限数据存入预测错误数据库中,以备模型更新之用。
步骤(2)建立新模型。原模型需要更新时,选择预测错误数据库中的工况(>1000组)数据,再在原模型的建模样本中随机选择部分工况数据(>500组)数据,将两部分数据共同作为训练样本(预测错误数据与原模型建模数据比例>2),进行下一步的模型更新建模,使更新后的模型兼顾了新燃烧特点和原来的燃烧特点,模型预测能力更全面。设数据样本可以表示为其中xi表示第i组作为输入数据的锅炉运行参数向量,yi表示第i组作为输出参数的表征锅炉燃烧状态特征的参数,采用支持向量机算法建立新的模型,核函数选为径向基函数:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于衢州远景资源再生科技有限公司,未经衢州远景资源再生科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201110115545.3/2.html,转载请声明来源钻瓜专利网。