[发明专利]一种基于信息理论与支持向量机的镜头边界检测算法无效

专利信息
申请号: 201110188738.1 申请日: 2011-07-06
公开(公告)号: CN102314613A 公开(公告)日: 2012-01-11
发明(设计)人: 毕佳磊;郎波;刘祥龙;李未 申请(专利权)人: 北京航空航天大学
主分类号: G06K9/62 分类号: G06K9/62;G06K9/66
代理公司: 北京科迪生专利代理有限责任公司 11251 代理人: 李新华
地址: 100191*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 信息 理论 支持 向量 镜头 边界 检测 算法
【说明书】:

技术领域

发明是一种在信息理论的基础上,通过互信量和联合熵的值,构造特征向量,训练向量机,并用支持向量机进行镜头边界检测的算法,是非结构化的视频数据进行基于内容检索的前提。

背景技术

随着多媒体技术和网络技术的飞速发展,数字视频的获取和传播变得越来越容易,已经逐渐成为人类信息传播的主要载体之一。在视频信息高度膨胀的今天,随之而来的问题就是对海量视频的高效检索和浏览。传统的视频检索通过对视频以手工的方法添加文字标识符的方式进行检索,这种检索方式工作量巨大、效率很低,而且受主观因素的影响,因此不能满足实际使用的需要。基于内容的视频检索技术借助计算机对视频进行从低层到高层的处理、分析和理解的过程获取其内容并根据内容进行检索,克服了传统的基于文本检索方式的不足,已成为多媒体信息检索领域的研究热点。

视频镜头分割是基于内容视频检索的前提。到目前为止出现了很多镜头边界检测算法:有基于像素点比较的方法,基于亮度或颜色直方图比较的方法,基于互信息量比较的方法,基于机器学习的方法等。传统的基于阈值比较的方法,很难寻找一个通用的阈值;基于机器学习的方法需要构造好的训练集,才能进行预测。

发明内容

本发明的技术解决问题:选择在镜头突变时变化明显的互信息量作为基本特征,构造分类明显的特征向量,用机器学习中基于支持向量机的方法,进行镜头边界检测,克服现有传统的基于阈值比较的方法的不足,更准确有效地检测视频中的镜头边界。

本发明的技术解决方案:一种基于信息理论与支持向量机的镜头边界检测算法,其特征在于步骤如下:

(1)获取视频的总帧数据nFrame,提取视频中每一帧中每个像素点的RGB颜色信息,并计算所有相邻帧的互信息量MI1和联合熵JE1,并计算所有相隔一帧的两帧间互信息量MI2,并保存这些量;

(2)对满足第一边界条件的每一帧t,对每一个帧间隔k,k=1或2,计算以t为中心,长度为w1的窗口内互信息量MIk的均值与MIk(t)的比值,作为帧t与帧t+k之间不相似性,记作Dk(t);

(3)对满足第二边界条件的每一帧t,以t为中心,取长度为w2的窗口,根据Dk(t)构造一个维度为2*w2的特征向量F(t);

(4)将F(t)作为训练好的向量机的输入,输出帧t是否为镜头边界;

根据本发明的又一个方面,其中步骤(1)进一步包括步骤:

(a)设置i的初始值为1,获取视频的总帧数nFrame;

(b)捕获视频的第i帧,提取帧中每个像点的RGB信息,分别对RGB三个颜色分量计算颜色直方图HR(i),HG(i),HB(i);

(c)若i-1≥1,分别对RGB三个分量计算帧i-1与i的联合直方图JHR(i-1,i),JHG(i-1,i),JHB(i-1,i),利用直方图和联合直方图计算两帧的互信息MI1(i-1),联合熵JE1(i-1);

(d)若i-2≥1,分别对RGB三个分量计算帧i-2与i的联合直方图JHR(i-2,i),JHG(i-2,i),JHB(i-2,i),利用直方图和联合直方图计算两帧的互信息MI2(i-2),并删除i-2帧缓存的RGB数据,直方图和联合直方图等临时数据;

(e)若i<nFrame,i=i+1,转(b);

根据本发明的又一个方面,其中步骤(2)进一步包括:

(a)计算Dk(t)时,对t设置的第一边界条件如下:t-w1/2≥1,t+k+w1/2≤nFrame,1≤k≤2;

(b)计算Dk(t)的公式如下:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京航空航天大学,未经北京航空航天大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201110188738.1/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top