[发明专利]一种自基底的SnO2纳米棒阵列的制备方法有效
申请号: | 201110199335.7 | 申请日: | 2011-07-15 |
公开(公告)号: | CN102275981A | 公开(公告)日: | 2011-12-14 |
发明(设计)人: | 胡俊青;张震宇;邹儒佳;余利;唐明华 | 申请(专利权)人: | 东华大学 |
主分类号: | C01G19/02 | 分类号: | C01G19/02;B82Y40/00 |
代理公司: | 上海泰能知识产权代理事务所 31233 | 代理人: | 黄志达;谢文凯 |
地址: | 201620 上海市*** | 国省代码: | 上海;31 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基底 sno sub 纳米 阵列 制备 方法 | ||
技术领域
本发明属于半导体纳米材料的制备领域,特别涉及一种自基底的SnO2纳米棒阵列的制备方法。
背景技术
近年来,各种形式的半导体纳米材料因其在化学探测、可循环电源电极、集成电路、太阳能电池等领域广阔的应用,越来越受到科学工作者广泛的研究兴趣。纳米尺度的一维半导体材料的阵列结构由于具有比表面积大、高度取向、优异的电子发射性质、易于集成化等性能特点,可用以制备广泛应用于微电子行业的纳米器件。
SnO2是目前最广泛使用的一种气敏传感材料,以SnO2为基的气敏传感器如今已在各个工业领域使用,是整个气敏传感器行业的基础,在可燃性气体,有害有毒气体的检测上得到广泛应用。在考虑响应时间、制作成本和使用寿命的条件下,为了进一步提高SnO2材料对气体的选择性、灵敏度和稳定性等,人们把目光投向了SnO2一维纳米结构材料,因为其一维纳米结构具有较其体材料更大的比表面积,对周围气氛的吸附能力及反应活性也都大大增强。制备SnO2纳米结构的方法已有很多报告,这些大都集中在SnO2颗粒粉体、多晶空心结构、纳米棒组装的花状结构等。而SnO2一维结构组成的阵列只有数篇报道,如热蒸发法(Adv.Funct.Mater.,2005,15,57-62)、氧化锌模板法(J.Mater.Chem.,2009,19,1019-1023),以及水热法(Nanoscale Res.Lett.,2010,5,1177-1181)、(J.Mater.Chem.,2009,19,1859-1864)、(CrystEngComm.,2010,12,4024-4027)等,但这些方法普遍存在着成本较高、制备过程较复杂,使用硅或金属衬底而使阵列和基底不能有效接触、不能实现微型化构建等问题。
发明内容
本发明所要解决的技术问题是提供一种自基底的SnO2纳米棒阵列的制备方法,该方法操作比较简单,容易规模化,对环境友好;所得的SnO2纳米棒阵列具有优异的气体-电阻敏感性能,应用前景广阔。
本发明的一种自基底的SnO2纳米棒阵列的制备方法,包括:
将锡源SnCl4和氢氧化钠溶于水中,再加入含有表面活性剂(生长导向剂)的有机溶剂,混合均匀后,再搅拌10-50分钟使SnO2纳米晶成核并在体系的辅助下自组装成为SnO2薄层基底,然后在100~300℃进行水热反应1~50小时,由于SnO2晶体生长的各向异性,在基底上生长成为垂直排列的纳米棒阵列;反应结束后,自然冷却至室温,过滤,洗涤,干燥即得。
所述的锡源SnCl4与氢氧化钠摩尔比为1∶1-1∶100。
所述的氢氧化钠在水中的浓度为0.1-10mol/L。
所述的表面活性剂为十二烷基硫酸钠(SDS),浓度为0.1~1mol/L。
所述的有机溶剂为乙醇、戊醇、正庚烷等中的一种或几种的混合液。
所述的SnO2纳米棒阵列直接长在SnO2薄层基底上,且该阵列形貌(纳米棒长度、密度等)可控。
所述的洗涤为用去离子水和乙醇洗涤。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东华大学,未经东华大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201110199335.7/2.html,转载请声明来源钻瓜专利网。
- 上一篇:采用预制标准容量容器构建水处理系统的方法
- 下一篇:治疗或预防癌症的药物
- 碳涂覆的阳极材料
- 一种SnO<sub>2</sub>-Zn<sub>2</sub>SnO<sub>4</sub>复合压敏陶瓷及制备方法
- 一种La<sub>2</sub>O<sub>3</sub>-SnO<sub>2</sub>-Zn<sub>2</sub>SnO<sub>4</sub>压敏-电容双功能陶瓷材料及其制备方法
- 一种La<sub>2</sub>O<sub>3</sub>-SnO<sub>2</sub>-Zn<sub>2</sub>SnO<sub>4</sub>压敏-电容双功能陶瓷材料及其制备方法
- Zn<sub>2</sub>SnO<sub>4</sub>/SnO<sub>2</sub>复合纳米结构、其制备方法及用途
- 一种SnO<sub>2</sub>纳米线阵列的制备方法
- 异质结二氧化锡气敏材料的制备方法及其产品和应用
- 分级结构的SnO2气敏材料及其制备方法
- 一种山茶花状ZnO/SnO-SnO<base:Sub>2
- 低电阻率Ag/SnO2电工触头材料及其制备
- 一种Nd<sub>2</sub>O<sub>3</sub>-Yb<sub>2</sub>O<sub>3</sub>改性的La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>-(Zr<sub>0.92</sub>Y<sub>0.08</sub>)O<sub>1.96</sub>复相热障涂层材料
- 无铅[(Na<sub>0.57</sub>K<sub>0.43</sub>)<sub>0.94</sub>Li<sub>0.06</sub>][(Nb<sub>0.94</sub>Sb<sub>0.06</sub>)<sub>0.95</sub>Ta<sub>0.05</sub>]O<sub>3</sub>纳米管及其制备方法
- 磁性材料HN(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub>·[Co<sub>4</sub>Na<sub>3</sub>(heb)<sub>6</sub>(N<sub>3</sub>)<sub>6</sub>]及合成方法
- 磁性材料[Co<sub>2</sub>Na<sub>2</sub>(hmb)<sub>4</sub>(N<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>]·(CH<sub>3</sub>CN)<sub>2</sub> 及合成方法
- 一种Bi<sub>0.90</sub>Er<sub>0.10</sub>Fe<sub>0.96</sub>Co<sub>0.02</sub>Mn<sub>0.02</sub>O<sub>3</sub>/Mn<sub>1-x</sub>Co<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> 复合膜及其制备方法
- Bi<sub>2</sub>O<sub>3</sub>-TeO<sub>2</sub>-SiO<sub>2</sub>-WO<sub>3</sub>系玻璃
- 荧光材料[Cu<sub>2</sub>Na<sub>2</sub>(mtyp)<sub>2</sub>(CH<sub>3</sub>COO)<sub>2</sub>(H<sub>2</sub>O)<sub>3</sub>]<sub>n</sub>及合成方法
- 一种(Y<sub>1</sub>-<sub>x</sub>Ln<sub>x</sub>)<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub>薄膜的直接制备方法
- 荧光材料(CH<sub>2</sub>NH<sub>3</sub>)<sub>2</sub>ZnI<sub>4</sub>
- Li<sub>1.2</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>Mn<sub>0.54</sub>O<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>复合材料的制备方法